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This document aims at giving explicit expressions for layer potentials for various classi-
cal equations in circular and spherical geometries. These expressions will then be used to
implement reference solutions in the boundary element library BemTool. More precisely,
these reference solutions will be stored under the form of routines located in the folder
bemtool/miscellaneous/ of the library.

For each considered case, we specify a domain Ω ⊂ Rd with d = 2 or 3, and denote Γ = ∂Ω its
boundary. We denote γd : H1(Ω) → H1/2(Γ) the interior Dirichlet trace defined by γd(u) :=
u|Γ for any u ∈ C 0(Ω), and γn : H1(∆,Ω) → H−1/2(Γ) the interior Neumann trace defined
by γn(u) := n · ∇u|Γ = ∂ru|Γ where n refers to the normal vector field directed toward the
exterior of Ω. We define γd,c, γn,c in the same manner, except that the traces are taken from
the exterior of Ω. Finally, we set

{γd} := (γd + γd,c)/2 {γn} := (γn + γn,c)/2

[γd] := γd − γd,c [γn] := γn − γn,c.

Let us introduce the layer potentials associated to the interior of Ω. For any trace v ∈
H+1/2(Γ), p ∈ H−1/2(Γ), their explicit expression is given by:

SL(p)(x) :=

∫
Γ

G (x− y)p(y)dσ(y),

DL(p)(x) :=

∫
Γ
n(y) · (∇G )(x− y)p(y)dσ(y).

(1)

1 Analytic solutions in 2-D

In this section Ω = D ⊂ R2 is the disc of center 0 and radius r? > 0. For a given point
x = (x1, x2) ∈ R2, we shall write (r, θ) to refer to its polar coordinates centered at 0,{

x1 = r cos θ,
x2 = r sin θ.

We shall use Fourier harmonics en(θ) := exp(ınθ) and write en(x/|x|) := en(θ). We will only
consider equation that admit rotational symetry (Laplace and Helmholtz equations), which
will at the end of the day implies∫

Γ
en · γ∗DL(ep)dσ =

∫
Γ
en · γ∗SL(ep)dσ = 0

for ∗ = d,n, and n 6= p.
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We shall then deliver explicit expressions for the coefficients
∫

Γ en · {γ∗}DL(en)dσ and
∫

Γ en ·
{γ∗}SL(en)dσ, for arbitrary n ∈ Z, and for ∗ = d,n.

1.1 Laplace equation

In this paragraph, we first consider the Laplace equation ∆u = 0 in R2\Γ with decay condition
at infinity. The Green kernel of this equation is G (x) := −(2π)−1 ln |x|. Note that, for Laplace
equation in 2D, the behaviour of layer potentials associated to the Fourier harmonics en with
n = 0 is somewhat special. Let us leave aside this case ate first and consider n ∈ Z \ {0}. The
layer potentials are then given by

SL(en)(x) =


r?

2|n|

( |x|
r?

)−|n|
en

( x

|x|

)
for |x| > r?

r?
2|n|

( |x|
r?

)+|n|
en

( x

|x|

)
for |x| < r?

and

DL(en)(x) =


−1

2

( |x|
r?

)−|n|
en

( x

|x|

)
for |x| > r?

+
1

2

( |x|
r?

)+|n|
en

( x

|x|

)
for |x| < r?

The boundary integral operators are given by∫
Γ
en {γd}SL(en)dσ = πr2

?/|n|,∫
Γ
en {γn}DL(en)dσ = π|n|,∫

Γ
en {γd}DL(en)dσ = 0,∫

Γ
en {γn}SL(en)dσ = 0.

For the case n = 0 we have e0(x) = 1. The layer potentials are given by

SL(e0) =

{
−r? ln(|x|) for |x| > r?

−r? ln(r?) for |x| < r?

DL(e0) = 1D(x)

and the expression of the corresponding integral operators is easily deduced∫
Γ
e0 {γd}SL(e0)dσ = −2πr2

? ln(r?),∫
Γ
e0 {γn}DL(e0)dσ = 0,∫

Γ
e0 {γd}DL(e0)dσ = +πr?,∫

Γ
e0 {γn}SL(e0)dσ = −πr?.
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1.2 Helmholtz equation

Here we consider an Helmholtz equation −∆u − κ2u = 0 with outgoing radiation condition.
The corresponding Green kernel is G (x) = ı

4H
(1)
0 (κ|x|), where H(1)

0 (z) refers to the Hankel
function of order zero and of the first kind, see §10.2 and Formula 10.4.3 in [1]. The layer
potentials admit the expressions

SL(en)(x) =


ır?

π

2
J|n|(κr?)H

(1)
|n| (κ|x|)en

( x

|x|

)
for |x| > r?

ır?
π

2
H

(1)
|n| (κr?)J|n|(κ|x|)en

( x

|x|

)
for |x| < r?

and

DL(en)(x) =


−ıκr?

π

2
H

(1)′

|n| (κr?)J|n|(κ|x|)en
( x

|x|

)
for |x| < r?

−ıκr?
π

2
J ′|n|(κr?)H

(1)
|n| (κ|x|)en

( x

|x|

)
for |x| > r?

The boundary integral operators are given by∫
Γ
en{γd}SL(en)dσ = ır2

?π
2H

(1)
|n| (κr?)J|n|(κr?)∫

Γ
en{γn}DL(en)dσ = −ıκ2r2

?π
2H

(1)′

|n| (κr?)J
′
|n|(κr?)∫

Γ
en{γn}SL(en)dσ = +r2

?ıκ
π2

2

(
H

(1)
|n| (κr?)J

′
|n|(κr?) +H

(1)′

|n| (κr?)J|n|(κr?)
)

∫
Γ
en{γd}DL(en)dσ = −ıκr2

?

π2

2

(
H

(1)
|n| (κr?)J

′
|n|(κr?) +H

(1)′

|n| (κr?)J|n|(κr?)
)

1.3 Modified Helmholtz equation

Here we consider a modified Helmholtz equation −∆u + κ2u = 0 with outgoing radiation
condition. The corresponding Green kernel is G (x) = 1

2πK0(κ|x|), where K0(z) refers to the
modified Bessel function of order zero and of the second kind, see §10.25 [1]. We also denote
I0, the modified Bessel function of order zero and of the first kind. The layer potentials admit
the expressions

SL(en)(x) =


r?K|n|(κ|x|)I|n|(κr?)en

( x

|x|

)
for |x| > r?

r?K|n|(κr?)I|n|(κ|x|)en
( x

|x|

)
for |x| < r?

and

DL(en)(x) =


−κr?I ′|n|(κr?)K|n|(κ|x|)en

( x

|x|

)
for |x| < r?

−κr?K ′|n|(κr?)I|n|(κ|x|)en
( x

|x|

)
for |x| > r?
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The boundary integral operators are given by∫
Γ
en{γd}SL(en)dσ = 2πr2

?K|n|(κr?)I|n|(κr?)∫
Γ
en{γn}DL(en)dσ = −2κ2r2

?πI
′
|n|(κr?)K

′
|n|(κr?)∫

Γ
en{γn}SL(en)dσ = +πr2

?κ
(
K ′|n|(κr?)I|n|(κr?) +K|n|(κr?)I

′
|n|(κr?)

)
∫

Γ
en{γd}DL(en)dσ = −κr2

?π
(
I ′|n|(κr?)K|n|(κr?) +K ′|n|(κr?)I|n|(κr?)

)
Notice that we can check the previous relations formally, using the relation obtained for the
Helmholtz equation with the transformation κ → ıκ, and the following relations for x ∈ R
(see Formula 10.27.6 and 10.27.8 in [1]):

K|n|(x) =
π

2
ı|n|+1H

(1)
|n| (ıx)

I|n|(x) = ı−|n|J|n|(ıx)

2 Analytic solutions in 3-D

In this section Ω = B ⊂ R3 is the ball of center 0 and radius ρ? > 0. For a given point
x = (x1, x2, x3) ∈ R3, we shall write (ρ, θ, ϕ) ∈ R+ × [0, π] × [0, 2π[ to refer to its polar
coordinates centered at 0, 

x1 = ρ sin θ cosϕ,
x2 = ρ sin θ sinϕ,
x3 = ρ cos θ.

To conduct separation of variables, we use the so-called spherical harmonics Ym
l (θ, ϕ) and

sometimes write Ym
l (x/|x|) := Ym

l (θ, ϕ). Here the indices l,m have to satisfy 0 ≤ |m| ≤ l.
For the definition of these functions, we use the convention of the boost::math library, namely

Ym
l (θ, ϕ) :=

√
(l + 1/2)

2π

(l − |m|)!
(l + |m|)!

Pml (cos θ) exp(ımϕ).

Here the Pml (z) are the associated Legendre functions. With thsis definition, the family (Ym
l )

forms an orthonormal basis of L2(S2) where S2 is the unit sphere. Here again, we consider only
rotation invariant equations (Laplace, Helmholtz and Maxwell), so that the layer potentials
will be diagonalised by the spherical harmonics∫

Γ
Y
m
l · γ∗DL(Yq

p)dσ =

∫
Γ

Y
m
l · γ∗SL(Yq

p)dσ = 0

for ∗ = d,n, and (l,m) 6= (p, q).

2.1 Laplace equation

In this paragraph, we first consider the Laplace equation ∆u = 0 in R3\Γ with decay condition
at infinity. The Green kernel of this equation is G (x) := 1/(4π|x|). The layer potentials are
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given by

SL(Ym
l )(x) =


ρ?

2l + 1

( |x|
ρ?

)−(l+1)
Ym
l

( x

|x|

)
for |x| > ρ?

ρ?
2l + 1

( |x|
ρ?

)+l
Ym
l

( x

|x|

)
for |x| < ρ?

and

DL(Ym
l )(x) =


− l

2l + 1

( |x|
ρ?

)−(l+1)
Ym
l

( x

|x|

)
for |x| > ρ?

+
l + 1

2l + 1

( |x|
ρ?

)+l
Ym
l

( x

|x|

)
for |x| < ρ?

The boundary integral operators are given by∫
Γ

Y
m
l {γd}SL(Ym

l )dσ =
ρ3
?

2l + 1∫
Γ

Y
m
l {γn}DL(Ym

l )dσ =
l(l + 1)

2l + 1
ρ?∫

Γ
Y
m
l {γn}SL(Ym

l )dσ = −1

2

ρ2
?

2l + 1∫
Γ

Y
m
l {γd}DL(Ym

l )dσ = +
1

2

ρ2
?

2l + 1

2.2 Helmholtz equation

Here we consider Helmholtz equation −∆u − κ2u = 0 with wave number κ > 0. The
outgoing Green kernel is given here by Gκ(x) := exp(ıκ|x|)/(4π|x|). Define the spherical
Bessel functions jl(z) :=

√
π/(2z)Jl+1/2(z) and the spherical Hankel functions h(1)

l (z) :=√
π/(2z)H

(1)
l+1/2(z) like in §10.47 of [1]. The single layer and double layer potentials admit

explicit expressions in terms of the spherical harmonics. On the one hand

SL(Ym
l )(x) =


+ıκρ2

? h
(1)
l (κρ?)jl(κ|x|)Ym

l

( x

|x|

)
for |x| < ρ?

+ıκρ2
? jl(κρ?)h

(1)
l (κ|x|)Ym

l

( x

|x|

)
for |x| > ρ?.

and

DL(Ym
l )(x) =


−ıκ2ρ2

? jl(κ|x|)h
(1)′

l (κρ?)Y
m
l

( x

|x|

)
for |x| < ρ?

−ıκ2ρ2
? h

(1)
l (κ|x|)j′l(κρ?)Ym

l

( x

|x|

)
for |x| > ρ?.
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The boundary integral operators are given by∫
Γ

Y
m
l {γd}SL(Ym

l )dσ = +ıκρ4
? jl(κρ?)h

(1)
l (κρ?),∫

Γ
Y
m
l {γn}DL(Ym

l )dσ = −ıκ3ρ4
? j
′
l(κρ?)h

(1)′

l (κρ?),∫
Γ

Y
m
l {γn}SL(Ym

l )dσ = +ı
κ2

2
ρ4
?

(
j′l(κρ?)h

(1)
l (κρ?) + jl(κρ?)h

(1)′

l (κρ?)
)
,∫

Γ
Y
m
l {γd}DL(Ym

l )dσ = −ıκ
2

2
ρ4
?

(
j′l(κρ?)h

(1)
l (κρ?) + jl(κρ?)h

(1)′

l (κρ?)
)
.

2.3 Modified Helmholtz equation

Here we consider Helmholtz equation −∆u+κ2u = 0 with wave number κ > 0. The outgoing
Green kernel is given here by Gκ(x) := exp(−ıκ|x|)/(4π|x|). Define the modified spheri-
cal Bessel functions il(z) :=

√
π/(2z)Il+1/2(z) and the modified spherical Hankel functions

kl(z) :=
√
π/(2z)Kl+1/2(z) like in §10.47 of [1]. The single layer and double layer potentials

admit explicit expressions in terms of the spherical harmonics. On the one hand

SL(Ym
l )(x) =


+

2κρ2
?

π
kl(κ|x|)il(κρ?)Ym

l

( x

|x|

)
for |x| < ρ?

+
2κρ2

?

π
kl(κρ?)il(κ|x|)Ym

l

( x

|x|

)
for |x| > ρ?.

and

DL(Ym
l )(x) =


−2κ2ρ2

?

π
kl(κ|x|)i

′
l(κρ?)Y

m
l

( x

|x|

)
for |x| < ρ?

−2κ2ρ2
?

π
k′l(κρ?)il(κ|x|)Ym

l

( x

|x|

)
for |x| > ρ?.

The boundary integral operators are given by∫
Γ

Y
m
l {γd}SL(Ym

l )dσ = +
2κρ4

?

π
il(κρ?)kl(κρ?),∫

Γ
Y
m
l {γn}DL(Ym

l )dσ = −2κ3ρ4
?

π
i′l(κρ?)k

′
l(κρ?),∫

Γ
Y
m
l {γn}SL(Ym

l )dσ = +
κ2ρ4

?

π

(
i′l(κρ?)kl(κρ?) + il(κρ?)k

′
l(κρ?)

)
,∫

Γ
Y
m
l {γd}DL(Ym

l )dσ = −κ
2ρ4
?

π

(
i′l(κρ?)kl(κρ?) + il(κρ?)k

′
l(κρ?)

)
.

Notice that we can check the previous relations formally, using the relation obtained for the
Helmholtz equation with the transformation κ → ıκ, and the following relations for x ∈ R
(see Formula 10.47.7 and 10.47.9 in [1] and formulas in section 1.3):

kl(x) = −π
2
ilh

(1)
l (ıx)

il(x) = ı−ljl(ıx)
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3 Analytic solutions to Maxwell’s equations

In the present section we use once again the notations of Section 2, in particular concerning
spherical coordinates and spherical harmonics. We need to introduce vector counterpart to
spherical harmonics. Considering the Ym

l = Ym
l (ϑ) as functions on the unit sphere ϑ ∈ S2 ⊂

R3, we set

X+
l,m =

1√
l(l + 1)

∇S2Ym
l , and, X−l,m =

1√
l(l + 1)

nS2 ×∇S2Ym
l

where nS2 refers to the unit normal vector on the unit sphere directed toward the exterior of
the unit ball. The set {X±l,m} yields an orthonormal basis of the space os square integrable
tangential vector fields over S2.

We only yield explicit expressions for the operators Electric Field Integral Equation (EFIE)
and Magnetic Field Integral Equation (MFIE). In a general geometrical setting, these are
defined by the following variationnal forms

〈EFIEκ(u),v〉 :=

∫
Γ×Γ

Gκ(x− y)
(
u(x) · v(y)− κ−2divΓu(x)divΓv(y)

)
dσ(x,y)

〈MFIEκ(u),v〉 :=

∫
Γ×Γ

(∇Gκ)(x− y) · (v(y)× u(x)) dσ(x,y)

Gκ(x) := exp(ıκ|x|)/(4π|x|)

In the case Γ = S2 we have:

〈EFIEκ(X+
l,m),X+

l,m〉 = (ı/κ)( jl(κ) + κj′l(κ) )( h
(1)
l (κ) + κh

(1)′
l (κ) )

〈EFIEκ(X−l,m),X−l,m〉 = (ı/κ)jl(κ)h
(1)
l (κ)

〈MFIEκ(X+
l,m),X−l,m〉 = 〈MFIEκ(X−l,m),X+

l,m〉
〈MFIEκ(X+

l,m),X−l,m〉 = −ı[jl(κ)(h
(1)
l (κ) + κh

(1)′
l (κ)) + h

(1)
l (κ)(jl(κ) + κj′l(κ))]

〈EFIEκ(X+
l,m),X−l,m〉 = 〈EFIEκ(X−l,m),X+

l,m〉 = 0

〈MFIEκ(X+
l,m),X+

l,m〉 = 〈MFIEκ(X−l,m),X−l,m〉 = 0
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