My Project
Loading...
Searching...
No Matches
Data Structures | Macros | Functions | Variables
simpleideals.h File Reference
#include "polys/monomials/ring.h"
#include "polys/matpol.h"

Go to the source code of this file.

Data Structures

struct  const_ideal
 The following sip_sideal structure has many different uses thoughout Singular. Basic use-cases for it are: More...
 
struct  const_map
 
struct  ideal_list
 

Macros

#define IDELEMS(i)   ((i)->ncols)
 
#define id_Init(s, r, R)   idInit(s,r)
 
#define id_Elem(F, R)   idElem(F)
 
#define id_Test(A, lR)   id_DBTest(A, PDEBUG, __FILE__,__LINE__, lR, lR)
 
#define id_LmTest(A, lR)   id_DBLmTest(A, PDEBUG, __FILE__,__LINE__, lR)
 
#define id_Print(id, lR, tR)   idShow(id, lR, tR)
 

Functions

ideal idInit (int size, int rank=1)
 creates an ideal / module
 
void id_Delete (ideal *h, ring r)
 deletes an ideal/module/matrix
 
void id_Delete0 (ideal *h, ring r)
 
void id_ShallowDelete (ideal *h, ring r)
 Shallowdeletes an ideal/matrix.
 
void idSkipZeroes (ideal ide)
 gives an ideal/module the minimal possible size
 
int idSkipZeroes0 (ideal ide)
 
static int idElem (const ideal F)
 number of non-zero polys in F
 
void id_Normalize (ideal id, const ring r)
 normialize all polys in id
 
int id_MinDegW (ideal M, intvec *w, const ring r)
 
void id_DBTest (ideal h1, int level, const char *f, const int l, const ring lR, const ring tR)
 Internal verification for ideals/modules and dense matrices!
 
void id_DBLmTest (ideal h1, int level, const char *f, const int l, const ring r)
 Internal verification for ideals/modules and dense matrices!
 
ideal id_Copy (ideal h1, const ring r)
 copy an ideal
 
ideal id_SimpleAdd (ideal h1, ideal h2, const ring r)
 concat the lists h1 and h2 without zeros
 
ideal id_Add (ideal h1, ideal h2, const ring r)
 h1 + h2
 
ideal id_Power (ideal given, int exp, const ring r)
 
BOOLEAN idIs0 (ideal h)
 returns true if h is the zero ideal
 
long id_RankFreeModule (ideal m, ring lmRing, ring tailRing)
 return the maximal component number found in any polynomial in s
 
static long id_RankFreeModule (ideal m, ring r)
 
ideal id_FreeModule (int i, const ring r)
 the free module of rank i
 
int id_PosConstant (ideal id, const ring r)
 index of generator with leading term in ground ring (if any); otherwise -1
 
ideal id_Head (ideal h, const ring r)
 returns the ideals of initial terms
 
ideal id_MaxIdeal (const ring r)
 initialise the maximal ideal (at 0)
 
ideal id_MaxIdeal (int deg, const ring r)
 
ideal id_CopyFirstK (const ideal ide, const int k, const ring r)
 copies the first k (>= 1) entries of the given ideal/module and returns these as a new ideal/module (Note that the copied entries may be zero.)
 
void id_DelMultiples (ideal id, const ring r)
 ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
 
void id_Norm (ideal id, const ring r)
 ideal id = (id[i]), result is leadcoeff(id[i]) = 1
 
void id_DelEquals (ideal id, const ring r)
 ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i
 
void id_DelLmEquals (ideal id, const ring r)
 Delete id[j], if Lm(j) == Lm(i) and both LC(j), LC(i) are units and j > i.
 
void id_DelDiv (ideal id, const ring r)
 delete id[j], if LT(j) == coeff*mon*LT(i) and vice versa, i.e., delete id[i], if LT(i) == coeff*mon*LT(j)
 
BOOLEAN id_IsConstant (ideal id, const ring r)
 test if the ideal has only constant polynomials NOTE: zero ideal/module is also constant
 
intvecid_Sort (const ideal id, const BOOLEAN nolex, const ring r)
 sorts the ideal w.r.t. the actual ringordering uses lex-ordering when nolex = FALSE
 
ideal id_Transp (ideal a, const ring rRing)
 transpose a module
 
void id_Compactify (ideal id, const ring r)
 
ideal id_Mult (ideal h1, ideal h2, const ring r)
 h1 * h2 one h_i must be an ideal (with at least one column) the other h_i may be a module (with no columns at all)
 
ideal id_Homogen (ideal h, int varnum, const ring r)
 
BOOLEAN id_HomIdeal (ideal id, ideal Q, const ring r)
 
BOOLEAN id_HomIdealW (ideal id, ideal Q, const intvec *w, const ring r)
 
BOOLEAN id_HomModuleW (ideal id, ideal Q, const intvec *w, const intvec *module_w, const ring r)
 
BOOLEAN id_HomModule (ideal m, ideal Q, intvec **w, const ring R)
 
BOOLEAN id_IsZeroDim (ideal I, const ring r)
 
ideal id_Jet (const ideal i, int d, const ring R)
 
ideal id_Jet0 (const ideal i, const ring R)
 
ideal id_JetW (const ideal i, int d, intvec *iv, const ring R)
 
ideal id_Subst (ideal id, int n, poly e, const ring r)
 
matrix id_Module2Matrix (ideal mod, const ring R)
 
matrix id_Module2formatedMatrix (ideal mod, int rows, int cols, const ring R)
 
ideal id_ResizeModule (ideal mod, int rows, int cols, const ring R)
 
ideal id_Matrix2Module (matrix mat, const ring R)
 converts mat to module, destroys mat
 
ideal id_Vec2Ideal (poly vec, const ring R)
 
int binom (int n, int r)
 
void idInitChoise (int r, int beg, int end, BOOLEAN *endch, int *choise)
 
void idGetNextChoise (int r, int end, BOOLEAN *endch, int *choise)
 
int idGetNumberOfChoise (int t, int d, int begin, int end, int *choise)
 
void idShow (const ideal id, const ring lmRing, const ring tailRing, const int debugPrint=0)
 
BOOLEAN id_InsertPolyWithTests (ideal h1, const int validEntries, const poly h2, const bool zeroOk, const bool duplicateOk, const ring r)
 insert h2 into h1 depending on the two boolean parameters:
 
intvecid_QHomWeight (ideal id, const ring r)
 
ideal id_ChineseRemainder (ideal *xx, number *q, int rl, const ring r)
 
void id_Shift (ideal M, int s, const ring r)
 
ideal id_Delete_Pos (const ideal I, const int pos, const ring r)
 
poly id_Array2Vector (poly *m, unsigned n, const ring R)
 for julia: convert an array of poly to vector
 
ideal id_PermIdeal (ideal I, int R, int C, const int *perm, const ring src, const ring dst, nMapFunc nMap, const int *par_perm, int P, BOOLEAN use_mult)
 mapping ideals/matrices to other rings
 

Variables

EXTERN_VAR omBin sip_sideal_bin
 

Data Structure Documentation

◆ sip_sideal

struct sip_sideal

The following sip_sideal structure has many different uses thoughout Singular. Basic use-cases for it are:

  • ideal/module: nrows = 1, ncols >=0 and rank:1 for ideals, rank>=0 for modules
  • matrix: nrows, ncols >=0, rank == nrows! see mp_* procedures NOTE: the m member point to memory chunk of size (ncols*nrows*sizeof(poly)) or is NULL

Definition at line 17 of file simpleideals.h.

Data Fields
poly * m
int ncols
int nrows
long rank

◆ sip_smap

struct sip_smap

Definition at line 32 of file simpleideals.h.

Data Fields
poly * m
int ncols
int nrows
char * preimage

◆ sideal_list

struct sideal_list

Definition at line 45 of file simpleideals.h.

Data Fields
ideal d
ideal_list next
int nr

Macro Definition Documentation

◆ id_Elem

#define id_Elem ( F,
R )   idElem(F)

Definition at line 79 of file simpleideals.h.

◆ id_Init

#define id_Init ( s,
r,
R )   idInit(s,r)

Definition at line 58 of file simpleideals.h.

◆ id_LmTest

#define id_LmTest ( A,
lR )   id_DBLmTest(A, PDEBUG, __FILE__,__LINE__, lR)

Definition at line 90 of file simpleideals.h.

◆ id_Print

#define id_Print ( id,
lR,
tR )   idShow(id, lR, tR)

Definition at line 159 of file simpleideals.h.

◆ id_Test

#define id_Test ( A,
lR )   id_DBTest(A, PDEBUG, __FILE__,__LINE__, lR, lR)

Definition at line 89 of file simpleideals.h.

◆ IDELEMS

#define IDELEMS ( i)    ((i)->ncols)

Definition at line 23 of file simpleideals.h.

Function Documentation

◆ binom()

int binom ( int n,
int r )

Definition at line 1148 of file simpleideals.cc.

1149{
1150 int i;
1151 int64 result;
1152
1153 if (r==0) return 1;
1154 if (n-r<r) return binom(n,n-r);
1155 result = n-r+1;
1156 for (i=2;i<=r;i++)
1157 {
1158 result *= n-r+i;
1159 result /= i;
1160 }
1161 if (result>MAX_INT_VAL)
1162 {
1163 WarnS("overflow in binomials");
1164 result=0;
1165 }
1166 return (int)result;
1167}
long int64
Definition auxiliary.h:68
int i
Definition cfEzgcd.cc:132
#define WarnS
Definition emacs.cc:78
return result
const int MAX_INT_VAL
Definition mylimits.h:12
int binom(int n, int r)

◆ id_Add()

ideal id_Add ( ideal h1,
ideal h2,
const ring r )

h1 + h2

Definition at line 905 of file simpleideals.cc.

906{
907 id_Test(h1, r);
908 id_Test(h2, r);
909
912 return result;
913}
ideal id_SimpleAdd(ideal h1, ideal h2, const ring R)
concat the lists h1 and h2 without zeros
void id_Compactify(ideal id, const ring r)
#define id_Test(A, lR)

◆ id_Array2Vector()

poly id_Array2Vector ( poly * m,
unsigned n,
const ring R )

for julia: convert an array of poly to vector

Definition at line 1461 of file simpleideals.cc.

1462{
1463 poly h;
1464 int l;
1465 sBucket_pt bucket = sBucketCreate(R);
1466
1467 for(unsigned j=0;j<n ;j++)
1468 {
1469 h = m[j];
1470 if (h!=NULL)
1471 {
1472 h=p_Copy(h, R);
1473 l=pLength(h);
1474 p_SetCompP(h,j+1, R);
1475 sBucket_Merge_p(bucket, h, l);
1476 }
1477 }
1478 sBucketClearMerge(bucket, &h, &l);
1479 sBucketDestroy(&bucket);
1480 return h;
1481}
int l
Definition cfEzgcd.cc:100
int m
Definition cfEzgcd.cc:128
int j
Definition facHensel.cc:110
STATIC_VAR Poly * h
Definition janet.cc:971
#define NULL
Definition omList.c:12
static int pLength(poly a)
Definition p_polys.h:190
static void p_SetCompP(poly p, int i, ring r)
Definition p_polys.h:254
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition p_polys.h:846
void sBucketClearMerge(sBucket_pt bucket, poly *p, int *length)
Definition sbuckets.cc:237
void sBucket_Merge_p(sBucket_pt bucket, poly p, int length)
Merges p into Spoly: assumes Bpoly and p have no common monoms destroys p!
Definition sbuckets.cc:148
void sBucketDestroy(sBucket_pt *bucket)
Definition sbuckets.cc:103
sBucket_pt sBucketCreate(const ring r)
Definition sbuckets.cc:96
#define R
Definition sirandom.c:27

◆ id_ChineseRemainder()

ideal id_ChineseRemainder ( ideal * xx,
number * q,
int rl,
const ring r )

Definition at line 2070 of file simpleideals.cc.

2071{
2072 int cnt=0;int rw=0; int cl=0;
2073 int i,j;
2074 // find max. size of xx[.]:
2075 for(j=rl-1;j>=0;j--)
2076 {
2077 i=IDELEMS(xx[j])*xx[j]->nrows;
2078 if (i>cnt) cnt=i;
2079 if (xx[j]->nrows >rw) rw=xx[j]->nrows; // for lifting matrices
2080 if (xx[j]->ncols >cl) cl=xx[j]->ncols; // for lifting matrices
2081 }
2082 if (rw*cl !=cnt)
2083 {
2084 WerrorS("format mismatch in CRT");
2085 return NULL;
2086 }
2087 ideal result=idInit(cnt,xx[0]->rank);
2088 result->nrows=rw; // for lifting matrices
2089 result->ncols=cl; // for lifting matrices
2090 number *x=(number *)omAlloc(rl*sizeof(number));
2091 poly *p=(poly *)omAlloc(rl*sizeof(poly));
2093 EXTERN_VAR int n_SwitchChinRem; //TEST
2096 for(i=cnt-1;i>=0;i--)
2097 {
2098 for(j=rl-1;j>=0;j--)
2099 {
2100 if(i>=IDELEMS(xx[j])*xx[j]->nrows) // out of range of this ideal
2101 p[j]=NULL;
2102 else
2103 p[j]=xx[j]->m[i];
2104 }
2106 for(j=rl-1;j>=0;j--)
2107 {
2108 if(i<IDELEMS(xx[j])*xx[j]->nrows) xx[j]->m[i]=p[j];
2109 }
2110 }
2112 omFreeSize(p,rl*sizeof(poly));
2113 omFreeSize(x,rl*sizeof(number));
2114 for(i=rl-1;i>=0;i--) id_Delete(&(xx[i]),r);
2115 omFreeSize(xx,rl*sizeof(ideal));
2116 return result;
2117}
Variable x
Definition cfModGcd.cc:4090
int p
Definition cfModGcd.cc:4086
cl
Definition cfModGcd.cc:4108
int int ncols
Definition cf_linsys.cc:32
int nrows
Definition cf_linsys.cc:32
void WerrorS(const char *s)
Definition feFopen.cc:24
#define EXTERN_VAR
Definition globaldefs.h:6
poly p_ChineseRemainder(poly *xx, mpz_ptr *x, mpz_ptr *q, int rl, mpz_ptr *C, const ring R)
VAR int n_SwitchChinRem
Definition longrat.cc:3097
#define omFreeSize(addr, size)
#define omAlloc(size)
ideal idInit(int idsize, int rank)
initialise an ideal / module
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
#define IDELEMS(i)

◆ id_Compactify()

void id_Compactify ( ideal id,
const ring r )

Definition at line 1395 of file simpleideals.cc.

1396{
1397 int i;
1398 BOOLEAN b=FALSE;
1399
1400 i = IDELEMS(id)-1;
1401 while ((! b) && (i>=0))
1402 {
1403 b=p_IsUnit(id->m[i],r);
1404 i--;
1405 }
1406 if (b)
1407 {
1408 for(i=IDELEMS(id)-1;i>=0;i--) p_Delete(&id->m[i],r);
1409 id->m[0]=p_One(r);
1410 }
1411 else
1412 {
1413 id_DelMultiples(id,r);
1414 }
1415 idSkipZeroes(id);
1416}
int BOOLEAN
Definition auxiliary.h:87
#define FALSE
Definition auxiliary.h:96
CanonicalForm b
Definition cfModGcd.cc:4111
poly p_One(const ring r)
Definition p_polys.cc:1316
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:901
static BOOLEAN p_IsUnit(const poly p, const ring r)
Definition p_polys.h:1991
void id_DelMultiples(ideal id, const ring r)
ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size

◆ id_Copy()

ideal id_Copy ( ideal h1,
const ring r )

copy an ideal

Definition at line 541 of file simpleideals.cc.

542{
543 id_Test(h1, r);
544
545 ideal h2 = idInit(IDELEMS(h1), h1->rank);
546 for (int i=IDELEMS(h1)-1; i>=0; i--)
547 h2->m[i] = p_Copy(h1->m[i],r);
548 return h2;
549}

◆ id_CopyFirstK()

ideal id_CopyFirstK ( const ideal ide,
const int k,
const ring r )

copies the first k (>= 1) entries of the given ideal/module and returns these as a new ideal/module (Note that the copied entries may be zero.)

Definition at line 265 of file simpleideals.cc.

266{
267 id_Test(ide, r);
268
269 assume( ide != NULL );
270 assume( k <= IDELEMS(ide) );
271
272 ideal newI = idInit(k, ide->rank);
273
274 for (int i = 0; i < k; i++)
275 newI->m[i] = p_Copy(ide->m[i],r);
276
277 return newI;
278}
int k
Definition cfEzgcd.cc:99
#define assume(x)
Definition mod2.h:387

◆ id_DBLmTest()

void id_DBLmTest ( ideal h1,
int level,
const char * f,
const int l,
const ring r )

Internal verification for ideals/modules and dense matrices!

Definition at line 604 of file simpleideals.cc.

605{
606 if (h1 != NULL)
607 {
608 // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix
609 omCheckAddrSize(h1,sizeof(*h1));
610
611 assume( h1->ncols >= 0 );
612 assume( h1->nrows >= 0 ); // matrix case!
613
614 assume( h1->rank >= 0 );
615
616 const long n = ((long)h1->ncols * (long)h1->nrows);
617
618 assume( !( n > 0 && h1->m == NULL) );
619
620 if( h1->m != NULL && n > 0 )
621 omdebugAddrSize(h1->m, n * sizeof(poly));
622
623 long new_rk = 0; // inlining id_RankFreeModule(h1, r, tailRing);
624
625 /* to be able to test matrices: */
626 for (long i=n - 1; i >= 0; i--)
627 {
628 if (h1->m[i]!=NULL)
629 {
630 _p_LmTest(h1->m[i], r, level);
631 const long k = p_GetComp(h1->m[i], r);
632 if (k > new_rk) new_rk = k;
633 }
634 }
635
636 // dense matrices only contain polynomials:
637 // h1->nrows == h1->rank > 1 && new_rk == 0!
638 assume( !( h1->nrows == h1->rank && h1->nrows > 1 && new_rk > 0 ) ); //
639
640 if(new_rk > h1->rank)
641 {
642 dReportError("wrong rank %d (should be %d) in %s:%d\n",
643 h1->rank, new_rk, f,l);
644 omPrintAddrInfo(stderr, h1, " for ideal");
645 h1->rank = new_rk;
646 }
647 }
648 else
649 {
650 Print("error: ideal==NULL in %s:%d\n",f,l);
651 assume( h1 != NULL );
652 }
653}
int level(const CanonicalForm &f)
FILE * f
Definition checklibs.c:9
#define Print
Definition emacs.cc:80
int dReportError(const char *fmt,...)
Definition dError.cc:44
#define p_GetComp(p, r)
Definition monomials.h:64
#define omdebugAddrSize(addr, size)
#define omCheckAddrSize(addr, size)
BOOLEAN _p_LmTest(poly p, ring r, int level)
Definition pDebug.cc:326
#define omPrintAddrInfo(A, B, C)
Definition xalloc.h:270

◆ id_DBTest()

void id_DBTest ( ideal h1,
int level,
const char * f,
const int l,
const ring lR,
const ring tR )

Internal verification for ideals/modules and dense matrices!

Definition at line 553 of file simpleideals.cc.

554{
555 if (h1 != NULL)
556 {
557 // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix
558 omCheckAddrSize(h1,sizeof(*h1));
559
560 assume( h1->ncols >= 0 );
561 assume( h1->nrows >= 0 ); // matrix case!
562
563 assume( h1->rank >= 0 );
564
565 const long n = ((long)h1->ncols * (long)h1->nrows);
566
567 assume( !( n > 0 && h1->m == NULL) );
568
569 if( h1->m != NULL && n > 0 )
570 omdebugAddrSize(h1->m, n * sizeof(poly));
571
572 long new_rk = 0; // inlining id_RankFreeModule(h1, r, tailRing);
573
574 /* to be able to test matrices: */
575 for (long i=n - 1; i >= 0; i--)
576 {
577 _pp_Test(h1->m[i], r, tailRing, level);
578 const long k = p_MaxComp(h1->m[i], r, tailRing);
579 if (k > new_rk) new_rk = k;
580 }
581
582 // dense matrices only contain polynomials:
583 // h1->nrows == h1->rank > 1 && new_rk == 0!
584 assume( !( h1->nrows == h1->rank && h1->nrows > 1 && new_rk > 0 ) ); //
585
586 if(new_rk > h1->rank)
587 {
588 dReportError("wrong rank %d (should be %d) in %s:%d\n",
589 h1->rank, new_rk, f,l);
590 omPrintAddrInfo(stderr, h1, " for ideal");
591 h1->rank = new_rk;
592 }
593 }
594 else
595 {
596 Print("error: ideal==NULL in %s:%d\n",f,l);
597 assume( h1 != NULL );
598 }
599}
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:292
BOOLEAN _pp_Test(poly p, ring lmRing, ring tailRing, int level)
Definition pDebug.cc:336

◆ id_DelDiv()

void id_DelDiv ( ideal id,
const ring r )

delete id[j], if LT(j) == coeff*mon*LT(i) and vice versa, i.e., delete id[i], if LT(i) == coeff*mon*LT(j)

Definition at line 462 of file simpleideals.cc.

463{
464 id_Test(id, r);
465
466 int i, j;
467 int k = IDELEMS(id)-1;
468#ifdef HAVE_RINGS
469 if (rField_is_Ring(r))
470 {
471 for (i=k-1; i>=0; i--)
472 {
473 if (id->m[i] != NULL)
474 {
475 for (j=k; j>i; j--)
476 {
477 if (id->m[j]!=NULL)
478 {
479 if (p_DivisibleByRingCase(id->m[i], id->m[j],r))
480 {
481 p_Delete(&id->m[j],r);
482 }
483 else if (p_DivisibleByRingCase(id->m[j], id->m[i],r))
484 {
485 p_Delete(&id->m[i],r);
486 break;
487 }
488 }
489 }
490 }
491 }
492 }
493 else
494#endif
495 {
496 /* the case of a coefficient field: */
497 if (k>9)
498 {
499 id_DelDiv_SEV(id,k,r);
500 return;
501 }
502 for (i=k-1; i>=0; i--)
503 {
504 if (id->m[i] != NULL)
505 {
506 for (j=k; j>i; j--)
507 {
508 if (id->m[j]!=NULL)
509 {
510 if (p_LmDivisibleBy(id->m[i], id->m[j],r))
511 {
512 p_Delete(&id->m[j],r);
513 }
514 else if (p_LmDivisibleBy(id->m[j], id->m[i],r))
515 {
516 p_Delete(&id->m[i],r);
517 break;
518 }
519 }
520 }
521 }
522 }
523 }
524}
BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r)
divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g),...
Definition p_polys.cc:1648
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition p_polys.h:1891
#define rField_is_Ring(R)
Definition ring.h:490
static void id_DelDiv_SEV(ideal id, int k, const ring r)
delete id[j], if LT(j) == coeff*mon*LT(i)

◆ id_DelEquals()

void id_DelEquals ( ideal id,
const ring r )

ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i

Definition at line 330 of file simpleideals.cc.

331{
332 id_Test(id, r);
333
334 int i, j;
335 int k = IDELEMS(id)-1;
336 for (i=k; i>=0; i--)
337 {
338 if (id->m[i]!=NULL)
339 {
340 for (j=k; j>i; j--)
341 {
342 if ((id->m[j]!=NULL)
343 && (p_EqualPolys(id->m[i], id->m[j],r)))
344 {
345 p_Delete(&id->m[j],r);
346 }
347 }
348 }
349 }
350}
BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r)
Definition p_polys.cc:4562

◆ id_Delete()

void id_Delete ( ideal * h,
ring r )

deletes an ideal/module/matrix

Definition at line 123 of file simpleideals.cc.

124{
125 if (*h == NULL)
126 return;
127
128 id_Test(*h, r);
129
130 const long elems = (long)(*h)->nrows * (long)(*h)->ncols;
131
132 if ( elems > 0 )
133 {
134 assume( (*h)->m != NULL );
135
136 if (r!=NULL)
137 {
138 long j = elems;
139 do
140 {
141 j--;
142 poly pp=((*h)->m[j]);
143 if (pp!=NULL) p_Delete(&pp, r);
144 }
145 while (j>0);
146 }
147
148 omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems);
149 }
150
152 *h=NULL;
153}
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
#define omFreeBin(addr, bin)
VAR omBin sip_sideal_bin

◆ id_Delete0()

void id_Delete0 ( ideal * h,
ring r )

Definition at line 155 of file simpleideals.cc.

156{
157 const long elems = IDELEMS(*h);
158
159 assume( (*h)->m != NULL );
160
161 long j = elems;
162 do
163 {
164 j--;
165 poly pp=((*h)->m[j]);
166 if (pp!=NULL) p_Delete(&pp, r);
167 }
168 while (j>0);
169
170 omFree((ADDRESS)((*h)->m));
172 *h=NULL;
173}
#define omFree(addr)

◆ id_Delete_Pos()

ideal id_Delete_Pos ( const ideal I,
const int pos,
const ring r )

Definition at line 2133 of file simpleideals.cc.

2134{
2135 if ((p<0)||(p>=IDELEMS(I))) return NULL;
2136 ideal ret=idInit(IDELEMS(I)-1,I->rank);
2137 for(int i=0;i<p;i++) ret->m[i]=p_Copy(I->m[i],r);
2138 for(int i=p+1;i<IDELEMS(I);i++) ret->m[i-1]=p_Copy(I->m[i],r);
2139 return ret;
2140}

◆ id_DelLmEquals()

void id_DelLmEquals ( ideal id,
const ring r )

Delete id[j], if Lm(j) == Lm(i) and both LC(j), LC(i) are units and j > i.

Definition at line 353 of file simpleideals.cc.

354{
355 id_Test(id, r);
356
357 int i, j;
358 int k = IDELEMS(id)-1;
359 for (i=k; i>=0; i--)
360 {
361 if (id->m[i] != NULL)
362 {
363 for (j=k; j>i; j--)
364 {
365 if ((id->m[j] != NULL)
366 && p_LmEqual(id->m[i], id->m[j],r)
368 && n_IsUnit(pGetCoeff(id->m[i]),r->cf) && n_IsUnit(pGetCoeff(id->m[j]),r->cf)
369#endif
370 )
371 {
372 p_Delete(&id->m[j],r);
373 }
374 }
375 }
376 }
377}
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:519
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
#define p_LmEqual(p1, p2, r)
Definition p_polys.h:1723

◆ id_DelMultiples()

void id_DelMultiples ( ideal id,
const ring r )

ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i

Definition at line 295 of file simpleideals.cc.

296{
297 id_Test(id, r);
298
299 int i, j;
300 int k = IDELEMS(id)-1;
301 for (i=k; i>=0; i--)
302 {
303 if (id->m[i]!=NULL)
304 {
305 for (j=k; j>i; j--)
306 {
307 if (id->m[j]!=NULL)
308 {
309 if (rField_is_Ring(r))
310 {
311 /* if id[j] = c*id[i] then delete id[j].
312 In the below cases of a ground field, we
313 check whether id[i] = c*id[j] and, if so,
314 delete id[j] for historical reasons (so
315 that previous output does not change) */
316 if (p_ComparePolys(id->m[j], id->m[i],r)) p_Delete(&id->m[j],r);
317 }
318 else
319 {
320 if (p_ComparePolys(id->m[i], id->m[j],r)) p_Delete(&id->m[j],r);
321 }
322 }
323 }
324 }
325 }
326}
BOOLEAN p_ComparePolys(poly p1, poly p2, const ring r)
returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
Definition p_polys.cc:4626

◆ id_FreeModule()

ideal id_FreeModule ( int i,
const ring r )

the free module of rank i

Definition at line 1171 of file simpleideals.cc.

1172{
1173 assume(i >= 0);
1174 if (r->isLPring)
1175 {
1176 PrintS("In order to address bimodules, the command freeAlgebra should be used.");
1177 }
1178 ideal h = idInit(i, i);
1179
1180 for (int j=0; j<i; j++)
1181 {
1182 h->m[j] = p_One(r);
1183 p_SetComp(h->m[j],j+1,r);
1184 p_SetmComp(h->m[j],r);
1185 }
1186
1187 return h;
1188}
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition p_polys.h:247
#define p_SetmComp
Definition p_polys.h:244
void PrintS(const char *s)
Definition reporter.cc:284

◆ id_Head()

ideal id_Head ( ideal h,
const ring r )

returns the ideals of initial terms

Definition at line 1419 of file simpleideals.cc.

1420{
1421 ideal m = idInit(IDELEMS(h),h->rank);
1422
1423 if (r->cf->has_simple_Alloc)
1424 {
1425 for (int i=IDELEMS(h)-1;i>=0; i--)
1426 if (h->m[i]!=NULL)
1427 m->m[i]=p_CopyPowerProduct0(h->m[i],pGetCoeff(h->m[i]),r);
1428 }
1429 else
1430 {
1431 for (int i=IDELEMS(h)-1;i>=0; i--)
1432 if (h->m[i]!=NULL)
1433 m->m[i]=p_Head(h->m[i],r);
1434 }
1435
1436 return m;
1437}
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition p_polys.cc:5018
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition p_polys.h:860

◆ id_HomIdeal()

BOOLEAN id_HomIdeal ( ideal id,
ideal Q,
const ring r )

Definition at line 995 of file simpleideals.cc.

996{
997 int i;
998 BOOLEAN b;
999 i = 0;
1000 b = TRUE;
1001 while ((i < IDELEMS(id)) && b)
1002 {
1003 b = p_IsHomogeneous(id->m[i],r);
1004 i++;
1005 }
1006 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1007 {
1008 i=0;
1009 while ((i < IDELEMS(Q)) && b)
1010 {
1011 b = p_IsHomogeneous(Q->m[i],r);
1012 i++;
1013 }
1014 }
1015 return b;
1016}
#define TRUE
Definition auxiliary.h:100
BOOLEAN p_IsHomogeneous(poly p, const ring r)
Definition p_polys.cc:3325
#define Q
Definition sirandom.c:26

◆ id_HomIdealW()

BOOLEAN id_HomIdealW ( ideal id,
ideal Q,
const intvec * w,
const ring r )

Definition at line 1018 of file simpleideals.cc.

1019{
1020 int i;
1021 BOOLEAN b;
1022 i = 0;
1023 b = TRUE;
1024 while ((i < IDELEMS(id)) && b)
1025 {
1026 b = p_IsHomogeneousW(id->m[i],w,r);
1027 i++;
1028 }
1029 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1030 {
1031 i=0;
1032 while ((i < IDELEMS(Q)) && b)
1033 {
1034 b = p_IsHomogeneousW(Q->m[i],w,r);
1035 i++;
1036 }
1037 }
1038 return b;
1039}
const CanonicalForm & w
Definition facAbsFact.cc:51
BOOLEAN p_IsHomogeneousW(poly p, const intvec *w, const ring r)
Definition p_polys.cc:3349

◆ id_HomModule()

BOOLEAN id_HomModule ( ideal m,
ideal Q,
intvec ** w,
const ring R )

Definition at line 1648 of file simpleideals.cc.

1649{
1650 if (w!=NULL) *w=NULL;
1651 if ((Q!=NULL) && (!id_HomIdeal(Q,NULL,R))) return FALSE;
1652 if (idIs0(m))
1653 {
1654 if (w!=NULL) (*w)=new intvec(m->rank);
1655 return TRUE;
1656 }
1657
1658 long cmax=1,order=0,ord,* diff,diffmin=32000;
1659 int *iscom;
1660 int i;
1661 poly p=NULL;
1662 pFDegProc d;
1663 if (R->pLexOrder && (R->order[0]==ringorder_lp))
1664 d=p_Totaldegree;
1665 else
1666 d=R->pFDeg;
1667 int length=IDELEMS(m);
1668 poly* P=m->m;
1669 poly* F=(poly*)omAlloc(length*sizeof(poly));
1670 for (i=length-1;i>=0;i--)
1671 {
1672 p=F[i]=P[i];
1674 }
1675 cmax++;
1676 diff = (long *)omAlloc0(cmax*sizeof(long));
1677 if (w!=NULL) *w=new intvec(cmax-1);
1678 iscom = (int *)omAlloc0(cmax*sizeof(int));
1679 i=0;
1680 while (i<=length)
1681 {
1682 if (i<length)
1683 {
1684 p=F[i];
1685 while ((p!=NULL) && (iscom[__p_GetComp(p,R)]==0)) pIter(p);
1686 }
1687 if ((p==NULL) && (i<length))
1688 {
1689 i++;
1690 }
1691 else
1692 {
1693 if (p==NULL) /* && (i==length) */
1694 {
1695 i=0;
1696 while ((i<length) && (F[i]==NULL)) i++;
1697 if (i>=length) break;
1698 p = F[i];
1699 }
1700 //if (pLexOrder && (currRing->order[0]==ringorder_lp))
1701 // order=pTotaldegree(p);
1702 //else
1703 // order = p->order;
1704 // order = pFDeg(p,currRing);
1705 order = d(p,R) +diff[__p_GetComp(p,R)];
1706 //order += diff[pGetComp(p)];
1707 p = F[i];
1708//Print("Actual p=F[%d]: ",i);pWrite(p);
1709 F[i] = NULL;
1710 i=0;
1711 }
1712 while (p!=NULL)
1713 {
1714 if (R->pLexOrder && (R->order[0]==ringorder_lp))
1715 ord=p_Totaldegree(p,R);
1716 else
1717 // ord = p->order;
1718 ord = R->pFDeg(p,R);
1719 if (iscom[__p_GetComp(p,R)]==0)
1720 {
1721 diff[__p_GetComp(p,R)] = order-ord;
1722 iscom[__p_GetComp(p,R)] = 1;
1723/*
1724*PrintS("new diff: ");
1725*for (j=0;j<cmax;j++) Print("%d ",diff[j]);
1726*PrintLn();
1727*PrintS("new iscom: ");
1728*for (j=0;j<cmax;j++) Print("%d ",iscom[j]);
1729*PrintLn();
1730*Print("new set %d, order %d, ord %d, diff %d\n",pGetComp(p),order,ord,diff[pGetComp(p)]);
1731*/
1732 }
1733 else
1734 {
1735/*
1736*PrintS("new diff: ");
1737*for (j=0;j<cmax;j++) Print("%d ",diff[j]);
1738*PrintLn();
1739*Print("order %d, ord %d, diff %d\n",order,ord,diff[pGetComp(p)]);
1740*/
1741 if (order != (ord+diff[__p_GetComp(p,R)]))
1742 {
1743 omFreeSize((ADDRESS) iscom,cmax*sizeof(int));
1744 omFreeSize((ADDRESS) diff,cmax*sizeof(long));
1745 omFreeSize((ADDRESS) F,length*sizeof(poly));
1746 delete *w;*w=NULL;
1747 return FALSE;
1748 }
1749 }
1750 pIter(p);
1751 }
1752 }
1753 omFreeSize((ADDRESS) iscom,cmax*sizeof(int));
1754 omFreeSize((ADDRESS) F,length*sizeof(poly));
1755 for (i=1;i<cmax;i++) (**w)[i-1]=(int)(diff[i]);
1756 for (i=1;i<cmax;i++)
1757 {
1758 if (diff[i]<diffmin) diffmin=diff[i];
1759 }
1760 if (w!=NULL)
1761 {
1762 for (i=1;i<cmax;i++)
1763 {
1764 (**w)[i-1]=(int)(diff[i]-diffmin);
1765 }
1766 }
1767 omFreeSize((ADDRESS) diff,cmax*sizeof(long));
1768 return TRUE;
1769}
static int si_max(const int a, const int b)
Definition auxiliary.h:124
static BOOLEAN length(leftv result, leftv arg)
Definition interval.cc:257
#define pIter(p)
Definition monomials.h:37
#define __p_GetComp(p, r)
Definition monomials.h:63
STATIC_VAR gmp_float * diff
#define omAlloc0(size)
static long p_Totaldegree(poly p, const ring r)
Definition p_polys.h:1507
long(* pFDegProc)(poly p, ring r)
Definition ring.h:38
@ ringorder_lp
Definition ring.h:77
BOOLEAN id_HomIdeal(ideal id, ideal Q, const ring r)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal

◆ id_HomModuleW()

BOOLEAN id_HomModuleW ( ideal id,
ideal Q,
const intvec * w,
const intvec * module_w,
const ring r )

Definition at line 1041 of file simpleideals.cc.

1042{
1043 int i;
1044 BOOLEAN b;
1045 i = 0;
1046 b = TRUE;
1047 while ((i < IDELEMS(id)) && b)
1048 {
1049 b = p_IsHomogeneousW(id->m[i],w,module_w,r);
1050 i++;
1051 }
1052 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1053 {
1054 i=0;
1055 while ((i < IDELEMS(Q)) && b)
1056 {
1057 b = p_IsHomogeneousW(Q->m[i],w,r);
1058 i++;
1059 }
1060 }
1061 return b;
1062}

◆ id_Homogen()

ideal id_Homogen ( ideal h,
int varnum,
const ring r )

Definition at line 1439 of file simpleideals.cc.

1440{
1441 ideal m = idInit(IDELEMS(h),h->rank);
1442 int i;
1443
1444 for (i=IDELEMS(h)-1;i>=0; i--)
1445 {
1446 m->m[i]=p_Homogen(h->m[i],varnum,r);
1447 }
1448 return m;
1449}
poly p_Homogen(poly p, int varnum, const ring r)
Definition p_polys.cc:3276

◆ id_InsertPolyWithTests()

BOOLEAN id_InsertPolyWithTests ( ideal h1,
const int validEntries,
const poly h2,
const bool zeroOk,
const bool duplicateOk,
const ring r )

insert h2 into h1 depending on the two boolean parameters:

  • if zeroOk is true, then h2 will also be inserted when it is zero
  • if duplicateOk is true, then h2 will also be inserted when it is already present in h1 return TRUE iff h2 was indeed inserted

Definition at line 877 of file simpleideals.cc.

879{
880 id_Test(h1, r);
881 p_Test(h2, r);
882
883 if ((!zeroOk) && (h2 == NULL)) return FALSE;
884 if (!duplicateOk)
885 {
886 bool h2FoundInH1 = false;
887 int i = 0;
888 while ((i < validEntries) && (!h2FoundInH1))
889 {
890 h2FoundInH1 = p_EqualPolys(h1->m[i], h2,r);
891 i++;
892 }
893 if (h2FoundInH1) return FALSE;
894 }
895 if (validEntries == IDELEMS(h1))
896 {
897 pEnlargeSet(&(h1->m), IDELEMS(h1), 16);
898 IDELEMS(h1) += 16;
899 }
900 h1->m[validEntries] = h2;
901 return TRUE;
902}
void pEnlargeSet(poly **p, int l, int increment)
Definition p_polys.cc:3718
#define p_Test(p, r)
Definition p_polys.h:161

◆ id_IsConstant()

BOOLEAN id_IsConstant ( ideal id,
const ring r )

test if the ideal has only constant polynomials NOTE: zero ideal/module is also constant

Definition at line 528 of file simpleideals.cc.

529{
530 id_Test(id, r);
531
532 for (int k = IDELEMS(id)-1; k>=0; k--)
533 {
534 if (!p_IsConstantPoly(id->m[k],r))
535 return FALSE;
536 }
537 return TRUE;
538}
static BOOLEAN p_IsConstantPoly(const poly p, const ring r)
Definition p_polys.h:1978

◆ id_IsZeroDim()

BOOLEAN id_IsZeroDim ( ideal I,
const ring r )

Definition at line 1888 of file simpleideals.cc.

1889{
1890 BOOLEAN *UsedAxis=(BOOLEAN *)omAlloc0(rVar(r)*sizeof(BOOLEAN));
1891 int i,n;
1892 poly po;
1894 for(i=IDELEMS(I)-1;i>=0;i--)
1895 {
1896 po=I->m[i];
1897 if ((po!=NULL) &&((n=p_IsPurePower(po,r))!=0)) UsedAxis[n-1]=TRUE;
1898 }
1899 for(i=rVar(r)-1;i>=0;i--)
1900 {
1901 if(UsedAxis[i]==FALSE) {res=FALSE; break;} // not zero-dim.
1902 }
1903 omFreeSize(UsedAxis,rVar(r)*sizeof(BOOLEAN));
1904 return res;
1905}
CanonicalForm res
Definition facAbsFact.cc:60
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition p_polys.cc:1229
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:597

◆ id_Jet()

ideal id_Jet ( const ideal i,
int d,
const ring R )

Definition at line 1771 of file simpleideals.cc.

1772{
1773 ideal r=idInit((i->nrows)*(i->ncols),i->rank);
1774 r->nrows = i-> nrows;
1775 r->ncols = i-> ncols;
1776 //r->rank = i-> rank;
1777
1778 for(long k=((long)(i->nrows))*((long)(i->ncols))-1;k>=0; k--)
1779 r->m[k]=pp_Jet(i->m[k],d,R);
1780
1781 return r;
1782}
poly pp_Jet(poly p, int m, const ring R)
Definition p_polys.cc:4380

◆ id_Jet0()

ideal id_Jet0 ( const ideal i,
const ring R )

Definition at line 1784 of file simpleideals.cc.

1785{
1786 ideal r=idInit((i->nrows)*(i->ncols),i->rank);
1787 r->nrows = i-> nrows;
1788 r->ncols = i-> ncols;
1789 //r->rank = i-> rank;
1790
1791 for(long k=((long)(i->nrows))*((long)(i->ncols))-1;k>=0; k--)
1792 r->m[k]=pp_Jet0(i->m[k],R);
1793
1794 return r;
1795}
poly pp_Jet0(poly p, const ring R)
Definition p_polys.cc:4408

◆ id_JetW()

ideal id_JetW ( const ideal i,
int d,
intvec * iv,
const ring R )

Definition at line 1797 of file simpleideals.cc.

1798{
1799 ideal r=idInit(IDELEMS(i),i->rank);
1800 if (ecartWeights!=NULL)
1801 {
1802 WerrorS("cannot compute weighted jets now");
1803 }
1804 else
1805 {
1806 int *w=iv2array(iv,R);
1807 int k;
1808 for(k=0; k<IDELEMS(i); k++)
1809 {
1810 r->m[k]=pp_JetW(i->m[k],d,w,R);
1811 }
1812 omFreeSize((ADDRESS)w,(rVar(R)+1)*sizeof(int));
1813 }
1814 return r;
1815}
poly pp_JetW(poly p, int m, int *w, const ring R)
Definition p_polys.cc:4453
int * iv2array(intvec *iv, const ring R)
Definition weight.cc:200
EXTERN_VAR short * ecartWeights
Definition weight.h:12

◆ id_Matrix2Module()

ideal id_Matrix2Module ( matrix mat,
const ring R )

converts mat to module, destroys mat

Definition at line 1484 of file simpleideals.cc.

1485{
1486 int mc=MATCOLS(mat);
1487 int mr=MATROWS(mat);
1488 ideal result = idInit(mc,mr);
1489 int i,j,l;
1490 poly h;
1491 sBucket_pt bucket = sBucketCreate(R);
1492
1493 for(j=0;j<mc /*MATCOLS(mat)*/;j++) /* j is also index in result->m */
1494 {
1495 for (i=0;i<mr /*MATROWS(mat)*/;i++)
1496 {
1497 h = MATELEM0(mat,i,j);
1498 if (h!=NULL)
1499 {
1500 l=pLength(h);
1501 MATELEM0(mat,i,j)=NULL;
1502 p_SetCompP(h,i+1, R);
1503 sBucket_Merge_p(bucket, h, l);
1504 }
1505 }
1506 sBucketClearMerge(bucket, &(result->m[j]), &l);
1507 }
1508 sBucketDestroy(&bucket);
1509
1510 // obachman: need to clean this up
1511 id_Delete((ideal*) &mat,R);
1512 return result;
1513}
#define MATELEM0(mat, i, j)
0-based access to matrix
Definition matpol.h:31
#define MATROWS(i)
Definition matpol.h:26
#define MATCOLS(i)
Definition matpol.h:27

◆ id_MaxIdeal() [1/2]

ideal id_MaxIdeal ( const ring r)

initialise the maximal ideal (at 0)

Definition at line 98 of file simpleideals.cc.

99{
100 int nvars;
101#ifdef HAVE_SHIFTBBA
102 if (r->isLPring)
103 {
104 nvars = r->isLPring;
105 }
106 else
107#endif
108 {
109 nvars = rVar(r);
110 }
111 ideal hh = idInit(nvars, 1);
112 for (int l=nvars-1; l>=0; l--)
113 {
114 hh->m[l] = p_One(r);
115 p_SetExp(hh->m[l],l+1,1,r);
116 p_Setm(hh->m[l],r);
117 }
118 id_Test(hh, r);
119 return hh;
120}
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition p_polys.h:488
static void p_Setm(poly p, const ring r)
Definition p_polys.h:233

◆ id_MaxIdeal() [2/2]

ideal id_MaxIdeal ( int deg,
const ring r )

Definition at line 1288 of file simpleideals.cc.

1289{
1290 if (deg < 1)
1291 {
1292 ideal I=idInit(1,1);
1293 I->m[0]=p_One(r);
1294 return I;
1295 }
1296 if (deg == 1
1298 && !r->isLPring
1299#endif
1300 )
1301 {
1302 return id_MaxIdeal(r);
1303 }
1304
1305 int vars, i;
1306#ifdef HAVE_SHIFTBBA
1307 if (r->isLPring)
1308 {
1309 vars = r->isLPring - r->LPncGenCount;
1310 i = 1;
1311 // i = vars^deg
1312 for (int j = 0; j < deg; j++)
1313 {
1314 i *= vars;
1315 }
1316 }
1317 else
1318#endif
1319 {
1320 vars = rVar(r);
1321 i = binom(vars+deg-1,deg);
1322 }
1323 if (i<=0) return idInit(1,1);
1324 ideal id=idInit(i,1);
1325 idpower = id->m;
1326 idpowerpoint = 0;
1327#ifdef HAVE_SHIFTBBA
1328 if (r->isLPring)
1329 {
1330 lpmakemonoms(vars, deg, r);
1331 }
1332 else
1333#endif
1334 {
1335 makemonoms(vars,1,deg,0,r);
1336 }
1337 idpower = NULL;
1338 idpowerpoint = 0;
1339 return id;
1340}
STATIC_VAR int idpowerpoint
STATIC_VAR poly * idpower
static void makemonoms(int vars, int actvar, int deg, int monomdeg, const ring r)
ideal id_MaxIdeal(const ring r)
initialise the maximal ideal (at 0)
static void lpmakemonoms(int vars, int deg, const ring r)

◆ id_MinDegW()

int id_MinDegW ( ideal M,
intvec * w,
const ring r )

Definition at line 1917 of file simpleideals.cc.

1918{
1919 int d=-1;
1920 for(int i=0;i<IDELEMS(M);i++)
1921 {
1922 if (M->m[i]!=NULL)
1923 {
1924 int d0=p_MinDeg(M->m[i],w,r);
1925 if(-1<d0&&((d0<d)||(d==-1)))
1926 d=d0;
1927 }
1928 }
1929 return d;
1930}
int p_MinDeg(poly p, intvec *w, const ring R)
Definition p_polys.cc:4498
#define M
Definition sirandom.c:25

◆ id_Module2formatedMatrix()

matrix id_Module2formatedMatrix ( ideal mod,
int rows,
int cols,
const ring R )

Definition at line 1564 of file simpleideals.cc.

1565{
1566 matrix result = mpNew(rows,cols);
1567 int i,cp,r=id_RankFreeModule(mod,R),c=IDELEMS(mod);
1568 poly p,h;
1569
1570 if (r>rows) r = rows;
1571 if (c>cols) c = cols;
1572 for(i=0;i<c;i++)
1573 {
1574 p=pReverse(mod->m[i]);
1575 mod->m[i]=NULL;
1576 while (p!=NULL)
1577 {
1578 h=p;
1579 pIter(p);
1580 pNext(h)=NULL;
1581 cp = p_GetComp(h,R);
1582 if (cp<=r)
1583 {
1584 p_SetComp(h,0,R);
1585 p_SetmComp(h,R);
1586 MATELEM0(result,cp-1,i) = p_Add_q(MATELEM0(result,cp-1,i),h,R);
1587 }
1588 else
1589 p_Delete(&h,R);
1590 }
1591 }
1592 id_Delete(&mod,R);
1593 return result;
1594}
CF_NO_INLINE FACTORY_PUBLIC CanonicalForm mod(const CanonicalForm &, const CanonicalForm &)
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition matpol.cc:37
#define pNext(p)
Definition monomials.h:36
static poly p_Add_q(poly p, poly q, const ring r)
Definition p_polys.h:936
static poly pReverse(poly p)
Definition p_polys.h:335
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s

◆ id_Module2Matrix()

matrix id_Module2Matrix ( ideal mod,
const ring R )

Definition at line 1518 of file simpleideals.cc.

1519{
1520 matrix result = mpNew(mod->rank,IDELEMS(mod));
1521 long i; long cp;
1522 poly p,h;
1523
1524 for(i=0;i<IDELEMS(mod);i++)
1525 {
1526 p=pReverse(mod->m[i]);
1527 mod->m[i]=NULL;
1528 while (p!=NULL)
1529 {
1530 h=p;
1531 pIter(p);
1532 pNext(h)=NULL;
1533 cp = si_max(1L,p_GetComp(h, R)); // if used for ideals too
1534 //cp = p_GetComp(h,R);
1535 p_SetComp(h,0,R);
1536 p_SetmComp(h,R);
1537#ifdef TEST
1538 if (cp>mod->rank)
1539 {
1540 Print("## inv. rank %ld -> %ld\n",mod->rank,cp);
1541 int k,l,o=mod->rank;
1542 mod->rank=cp;
1543 matrix d=mpNew(mod->rank,IDELEMS(mod));
1544 for (l=0; l<o; l++)
1545 {
1546 for (k=0; k<IDELEMS(mod); k++)
1547 {
1550 }
1551 }
1552 id_Delete((ideal *)&result,R);
1553 result=d;
1554 }
1555#endif
1556 MATELEM0(result,cp-1,i) = p_Add_q(MATELEM0(result,cp-1,i),h,R);
1557 }
1558 }
1559 // obachman 10/99: added the following line, otherwise memory leack!
1560 id_Delete(&mod,R);
1561 return result;
1562}

◆ id_Mult()

ideal id_Mult ( ideal h1,
ideal h2,
const ring r )

h1 * h2 one h_i must be an ideal (with at least one column) the other h_i may be a module (with no columns at all)

Definition at line 918 of file simpleideals.cc.

919{
920 id_Test(h1, R);
921 id_Test(h2, R);
922
923 int j = IDELEMS(h1);
924 while ((j > 0) && (h1->m[j-1] == NULL)) j--;
925
926 int i = IDELEMS(h2);
927 while ((i > 0) && (h2->m[i-1] == NULL)) i--;
928
929 j *= i;
930 int r = si_max( h2->rank, h1->rank );
931 if (j==0)
932 {
933 if ((IDELEMS(h1)>0) && (IDELEMS(h2)>0)) j=1;
934 return idInit(j, r);
935 }
936 ideal hh = idInit(j, r);
937
938 int k = 0;
939 for (i=0; i<IDELEMS(h1); i++)
940 {
941 if (h1->m[i] != NULL)
942 {
943 for (j=0; j<IDELEMS(h2); j++)
944 {
945 if (h2->m[j] != NULL)
946 {
947 hh->m[k] = pp_Mult_qq(h1->m[i],h2->m[j],R);
948 k++;
949 }
950 }
951 }
952 }
953
955 return hh;
956}
static poly pp_Mult_qq(poly p, poly q, const ring r)
Definition p_polys.h:1151

◆ id_Norm()

void id_Norm ( ideal id,
const ring r )

ideal id = (id[i]), result is leadcoeff(id[i]) = 1

Definition at line 281 of file simpleideals.cc.

282{
283 id_Test(id, r);
284 for (int i=IDELEMS(id)-1; i>=0; i--)
285 {
286 if (id->m[i] != NULL)
287 {
288 p_Norm(id->m[i],r);
289 }
290 }
291}
void p_Norm(poly p1, const ring r)
Definition p_polys.cc:3741

◆ id_Normalize()

void id_Normalize ( ideal id,
const ring r )

normialize all polys in id

Definition at line 1907 of file simpleideals.cc.

1908{
1909 if (rField_has_simple_inverse(r)) return; /* Z/p, GF(p,n), R, long R/C */
1910 int i;
1911 for(i=I->nrows*I->ncols-1;i>=0;i--)
1912 {
1913 p_Normalize(I->m[i],r);
1914 }
1915}
void p_Normalize(poly p, const ring r)
Definition p_polys.cc:3835
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition ring.h:553

◆ id_PermIdeal()

ideal id_PermIdeal ( ideal I,
int R,
int C,
const int * perm,
const ring src,
const ring dst,
nMapFunc nMap,
const int * par_perm,
int P,
BOOLEAN use_mult )

mapping ideals/matrices to other rings

Definition at line 2142 of file simpleideals.cc.

2144{
2145 ideal II=(ideal)mpNew(R,C);
2146 II->rank=I->rank;
2147 for(int i=R*C-1; i>=0; i--)
2148 {
2149 II->m[i]=p_PermPoly(I->m[i],perm,src,dst,nMap,par_perm,P,use_mult);
2150 }
2151 return II;
2152}
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition p_polys.cc:4152

◆ id_PosConstant()

int id_PosConstant ( ideal id,
const ring r )

index of generator with leading term in ground ring (if any); otherwise -1

Definition at line 80 of file simpleideals.cc.

81{
82 id_Test(id, r);
83 const int N = IDELEMS(id) - 1;
84 const poly * m = id->m + N;
85
86 for (int k = N; k >= 0; --k, --m)
87 {
88 const poly p = *m;
89 if (p!=NULL)
90 if (p_LmIsConstantComp(p, r) == TRUE)
91 return k;
92 }
93
94 return -1;
95}
const CanonicalForm CFMap CFMap & N
Definition cfEzgcd.cc:56
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition p_polys.h:1006

◆ id_Power()

ideal id_Power ( ideal given,
int exp,
const ring r )

Definition at line 1369 of file simpleideals.cc.

1370{
1372 poly p1;
1373 int i;
1374
1375 if (idIs0(given)) return idInit(1,1);
1376 temp = id_Copy(given,r);
1378 i = binom(IDELEMS(temp)+exp-1,exp);
1379 result = idInit(i,1);
1380 result->nrows = 0;
1381//Print("ideal contains %d elements\n",i);
1382 p1=p_One(r);
1384 p_Delete(&p1,r);
1385 id_Delete(&temp,r);
1386 result->nrows = 1;
1389 return result;
1390}
gmp_float exp(const gmp_float &a)
static void id_NextPotence(ideal given, ideal result, int begin, int end, int deg, int restdeg, poly ap, const ring r)
ideal id_Copy(ideal h1, const ring r)
copy an ideal
void id_DelEquals(ideal id, const ring r)
ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i

◆ id_QHomWeight()

intvec * id_QHomWeight ( ideal id,
const ring r )

Definition at line 1841 of file simpleideals.cc.

1842{
1843 poly head, tail;
1844 int k;
1845 int in=IDELEMS(id)-1, ready=0, all=0,
1846 coldim=rVar(r), rowmax=2*coldim;
1847 if (in<0) return NULL;
1848 intvec *imat=new intvec(rowmax+1,coldim,0);
1849
1850 do
1851 {
1852 head = id->m[in--];
1853 if (head!=NULL)
1854 {
1855 tail = pNext(head);
1856 while (tail!=NULL)
1857 {
1858 all++;
1859 for (k=1;k<=coldim;k++)
1860 IMATELEM(*imat,all,k) = p_GetExpDiff(head,tail,k,r);
1861 if (all==rowmax)
1862 {
1863 ivTriangIntern(imat, ready, all);
1864 if (ready==coldim)
1865 {
1866 delete imat;
1867 return NULL;
1868 }
1869 }
1870 pIter(tail);
1871 }
1872 }
1873 } while (in>=0);
1874 if (all>ready)
1875 {
1876 ivTriangIntern(imat, ready, all);
1877 if (ready==coldim)
1878 {
1879 delete imat;
1880 return NULL;
1881 }
1882 }
1883 intvec *result = ivSolveKern(imat, ready);
1884 delete imat;
1885 return result;
1886}
CanonicalForm head(const CanonicalForm &f)
void ivTriangIntern(intvec *imat, int &ready, int &all)
Definition intvec.cc:404
intvec * ivSolveKern(intvec *imat, int dimtr)
Definition intvec.cc:442
#define IMATELEM(M, I, J)
Definition intvec.h:85
static long p_GetExpDiff(poly p1, poly p2, int i, ring r)
Definition p_polys.h:635

◆ id_RankFreeModule() [1/2]

long id_RankFreeModule ( ideal m,
ring lmRing,
ring tailRing )

return the maximal component number found in any polynomial in s

Definition at line 973 of file simpleideals.cc.

974{
975 long j = 0;
976
977 if (rRing_has_Comp(tailRing) && rRing_has_Comp(lmRing))
978 {
979 poly *p=s->m;
980 for (unsigned int l=IDELEMS(s); l > 0; --l, ++p)
981 if (*p != NULL)
982 {
983 pp_Test(*p, lmRing, tailRing);
984 const long k = p_MaxComp(*p, lmRing, tailRing);
985 if (k>j) j = k;
986 }
987 }
988
989 return j; // return -1;
990}
const CanonicalForm int s
Definition facAbsFact.cc:51
#define rRing_has_Comp(r)
Definition monomials.h:266
#define pp_Test(p, lmRing, tailRing)
Definition p_polys.h:163

◆ id_RankFreeModule() [2/2]

static long id_RankFreeModule ( ideal m,
ring r )
inlinestatic

Definition at line 108 of file simpleideals.h.

109{return id_RankFreeModule(m, r, r);}
long id_RankFreeModule(ideal m, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s

◆ id_ResizeModule()

ideal id_ResizeModule ( ideal mod,
int rows,
int cols,
const ring R )

Definition at line 1596 of file simpleideals.cc.

1597{
1598 // columns?
1599 if (cols!=IDELEMS(mod))
1600 {
1601 for(int i=IDELEMS(mod)-1;i>=cols;i--) p_Delete(&mod->m[i],R);
1602 pEnlargeSet(&(mod->m),IDELEMS(mod),cols-IDELEMS(mod));
1603 IDELEMS(mod)=cols;
1604 }
1605 // rows?
1606 if (rows<mod->rank)
1607 {
1608 for(int i=IDELEMS(mod)-1;i>=0;i--)
1609 {
1610 if (mod->m[i]!=NULL)
1611 {
1612 while((mod->m[i]!=NULL) && (p_GetComp(mod->m[i],R)>rows))
1613 mod->m[i]=p_LmDeleteAndNext(mod->m[i],R);
1614 poly p=mod->m[i];
1615 while(pNext(p)!=NULL)
1616 {
1617 if (p_GetComp(pNext(p),R)>rows)
1619 else
1620 pIter(p);
1621 }
1622 }
1623 }
1624 }
1625 mod->rank=rows;
1626 return mod;
1627}
static poly p_LmDeleteAndNext(poly p, const ring r)
Definition p_polys.h:755

◆ id_ShallowDelete()

void id_ShallowDelete ( ideal * h,
ring r )

Shallowdeletes an ideal/matrix.

Definition at line 177 of file simpleideals.cc.

178{
179 id_Test(*h, r);
180
181 if (*h == NULL)
182 return;
183
184 int j,elems;
185 elems=j=(*h)->nrows*(*h)->ncols;
186 if (j>0)
187 {
188 assume( (*h)->m != NULL );
189 do
190 {
191 p_ShallowDelete(&((*h)->m[--j]), r);
192 }
193 while (j>0);
194 omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems);
195 }
197 *h=NULL;
198}
void p_ShallowDelete(poly *p, const ring r)

◆ id_Shift()

void id_Shift ( ideal M,
int s,
const ring r )

Definition at line 2119 of file simpleideals.cc.

2120{
2121// id_Test( M, r );
2122
2123// assume( s >= 0 ); // negative is also possible // TODO: verify input ideal in such a case!?
2124
2125 for(int i=IDELEMS(M)-1; i>=0;i--)
2126 p_Shift(&(M->m[i]),s,r);
2127
2128 M->rank += s;
2129
2130// id_Test( M, r );
2131}
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
Definition p_polys.cc:4756

◆ id_SimpleAdd()

ideal id_SimpleAdd ( ideal h1,
ideal h2,
const ring r )

concat the lists h1 and h2 without zeros

Definition at line 789 of file simpleideals.cc.

790{
791 id_Test(h1, R);
792 id_Test(h2, R);
793
794 if ( idIs0(h1) )
795 {
797 if (res->rank<h1->rank) res->rank=h1->rank;
798 return res;
799 }
800 if ( idIs0(h2) )
801 {
803 if (res->rank<h2->rank) res->rank=h2->rank;
804 return res;
805 }
806
807 int j = IDELEMS(h1)-1;
808 while ((j >= 0) && (h1->m[j] == NULL)) j--;
809
810 int i = IDELEMS(h2)-1;
811 while ((i >= 0) && (h2->m[i] == NULL)) i--;
812
813 const int r = si_max(h1->rank, h2->rank);
814
815 ideal result = idInit(i+j+2,r);
816
817 int l;
818
819 for (l=j; l>=0; l--)
820 result->m[l] = p_Copy(h1->m[l],R);
821
822 j = i+j+1;
823 for (l=i; l>=0; l--, j--)
824 result->m[j] = p_Copy(h2->m[l],R);
825
826 return result;
827}

◆ id_Sort()

intvec * id_Sort ( const ideal id,
const BOOLEAN nolex,
const ring r )

sorts the ideal w.r.t. the actual ringordering uses lex-ordering when nolex = FALSE

Definition at line 694 of file simpleideals.cc.

695{
696 id_Test(id, r);
697
698 intvec * result = new intvec(IDELEMS(id));
699 int i, j, actpos=0, newpos;
702
703 for (i=0;i<IDELEMS(id);i++)
704 {
705 if (id->m[i]!=NULL)
706 {
707 notFound = TRUE;
708 newpos = actpos / 2;
709 diff = (actpos+1) / 2;
710 diff = (diff+1) / 2;
711 lastcomp = p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r);
712 if (lastcomp<0)
713 {
714 newpos -= diff;
715 }
716 else if (lastcomp>0)
717 {
718 newpos += diff;
719 }
720 else
721 {
722 notFound = FALSE;
723 }
724 //while ((newpos>=0) && (newpos<actpos) && (notFound))
725 while (notFound && (newpos>=0) && (newpos<actpos))
726 {
727 newcomp = p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r);
728 olddiff = diff;
729 if (diff>1)
730 {
731 diff = (diff+1) / 2;
732 if ((newcomp==1)
733 && (actpos-newpos>1)
734 && (diff>1)
735 && (newpos+diff>=actpos))
736 {
737 diff = actpos-newpos-1;
738 }
739 else if ((newcomp==-1)
740 && (diff>1)
741 && (newpos<diff))
742 {
743 diff = newpos;
744 }
745 }
746 if (newcomp<0)
747 {
748 if ((olddiff==1) && (lastcomp>0))
749 notFound = FALSE;
750 else
751 newpos -= diff;
752 }
753 else if (newcomp>0)
754 {
755 if ((olddiff==1) && (lastcomp<0))
756 {
757 notFound = FALSE;
758 newpos++;
759 }
760 else
761 {
762 newpos += diff;
763 }
764 }
765 else
766 {
767 notFound = FALSE;
768 }
770 if (diff==0) notFound=FALSE; /*hs*/
771 }
772 if (newpos<0) newpos = 0;
773 if (newpos>actpos) newpos = actpos;
774 while ((newpos<actpos) && (p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r)==0))
775 newpos++;
776 for (j=actpos;j>newpos;j--)
777 {
778 (*result)[j] = (*result)[j-1];
779 }
780 (*result)[newpos] = i;
781 actpos++;
782 }
783 }
784 for (j=0;j<actpos;j++) (*result)[j]++;
785 return result;
786}
static int p_Comp_RevLex(poly a, poly b, BOOLEAN nolex, const ring R)
for idSort: compare a and b revlex inclusive module comp.

◆ id_Subst()

ideal id_Subst ( ideal id,
int n,
poly e,
const ring r )

Definition at line 1633 of file simpleideals.cc.

1634{
1635 int k=MATROWS((matrix)id)*MATCOLS((matrix)id);
1637
1638 res->rank = id->rank;
1639 for(k--;k>=0;k--)
1640 {
1641 res->m[k]=p_Subst(id->m[k],n,e,r);
1642 id->m[k]=NULL;
1643 }
1644 id_Delete(&id,r);
1645 return res;
1646}
poly * m
Definition matpol.h:18
poly p_Subst(poly p, int n, poly e, const ring r)
Definition p_polys.cc:3980

◆ id_Transp()

ideal id_Transp ( ideal a,
const ring rRing )

transpose a module

Definition at line 1937 of file simpleideals.cc.

1938{
1939 int r = a->rank, c = IDELEMS(a);
1940 ideal b = idInit(r,c);
1941
1942 int i;
1943 for (i=c; i>0; i--)
1944 {
1945 poly p=a->m[i-1];
1946 while(p!=NULL)
1947 {
1948 poly h=p_Head(p, rRing);
1949 int co=__p_GetComp(h, rRing)-1;
1950 p_SetComp(h, i, rRing);
1951 p_Setm(h, rRing);
1952 h->next=b->m[co];
1953 b->m[co]=h;
1954 pIter(p);
1955 }
1956 }
1957 for (i=IDELEMS(b)-1; i>=0; i--)
1958 {
1959 poly p=b->m[i];
1960 if(p!=NULL)
1961 {
1962 b->m[i]=p_SortMerge(p,rRing,TRUE);
1963 }
1964 }
1965 return b;
1966}
static poly p_SortMerge(poly p, const ring r, BOOLEAN revert=FALSE)
Definition p_polys.h:1229

◆ id_Vec2Ideal()

ideal id_Vec2Ideal ( poly vec,
const ring R )

Definition at line 1452 of file simpleideals.cc.

1453{
1454 ideal result=idInit(1,1);
1456 p_Vec2Polys(vec, &(result->m), &(IDELEMS(result)),R);
1457 return result;
1458}
fq_nmod_poly_t * vec
Definition facHensel.cc:108
#define omFreeBinAddr(addr)
void p_Vec2Polys(poly v, poly **p, int *len, const ring r)
Definition p_polys.cc:3647

◆ idElem()

int idElem ( const ideal F)
inlinestatic

number of non-zero polys in F

Definition at line 69 of file simpleideals.h.

70{
71 int i=0;
72 for(int j=IDELEMS(F)-1;j>=0;j--)
73 {
74 if ((F->m)[j]!=NULL) i++;
75 }
76 return i;
77}

◆ idGetNextChoise()

void idGetNextChoise ( int r,
int end,
BOOLEAN * endch,
int * choise )

Definition at line 1090 of file simpleideals.cc.

1091{
1092 int i = r-1,j;
1093 while ((i >= 0) && (choise[i] == end))
1094 {
1095 i--;
1096 end--;
1097 }
1098 if (i == -1)
1099 *endch = TRUE;
1100 else
1101 {
1102 choise[i]++;
1103 for (j=i+1; j<r; j++)
1104 {
1105 choise[j] = choise[i]+j-i;
1106 }
1107 *endch = FALSE;
1108 }
1109}

◆ idGetNumberOfChoise()

int idGetNumberOfChoise ( int t,
int d,
int begin,
int end,
int * choise )

Definition at line 1116 of file simpleideals.cc.

1117{
1118 int * localchoise,i,result=0;
1119 BOOLEAN b=FALSE;
1120
1121 if (d<=1) return 1;
1122 localchoise=(int*)omAlloc((d-1)*sizeof(int));
1123 idInitChoise(d-1,begin,end,&b,localchoise);
1124 while (!b)
1125 {
1126 result++;
1127 i = 0;
1128 while ((i<t) && (localchoise[i]==choise[i])) i++;
1129 if (i>=t)
1130 {
1131 i = t+1;
1132 while ((i<d) && (localchoise[i-1]==choise[i])) i++;
1133 if (i>=d)
1134 {
1135 omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int));
1136 return result;
1137 }
1138 }
1139 idGetNextChoise(d-1,end,&b,localchoise);
1140 }
1141 omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int));
1142 return 0;
1143}
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)

◆ idInit()

ideal idInit ( int idsize,
int rank )

creates an ideal / module

creates an ideal / module

Definition at line 35 of file simpleideals.cc.

36{
37 assume( idsize >= 0 && rank >= 0 );
38
40
41 IDELEMS(hh) = idsize; // ncols
42 hh->nrows = 1; // ideal/module!
43
44 hh->rank = rank; // ideal: 1, module: >= 0!
45
46 if (idsize>0)
47 hh->m = (poly *)omAlloc0(idsize*sizeof(poly));
48 else
49 hh->m = NULL;
50
51 return hh;
52}
#define omAllocBin(bin)

◆ idInitChoise()

void idInitChoise ( int r,
int beg,
int end,
BOOLEAN * endch,
int * choise )

Definition at line 1068 of file simpleideals.cc.

1069{
1070 /*returns the first choise of r numbers between beg and end*/
1071 int i;
1072 for (i=0; i<r; i++)
1073 {
1074 choise[i] = 0;
1075 }
1076 if (r <= end-beg+1)
1077 for (i=0; i<r; i++)
1078 {
1079 choise[i] = beg+i;
1080 }
1081 if (r > end-beg+1)
1082 *endch = TRUE;
1083 else
1084 *endch = FALSE;
1085}

◆ idIs0()

BOOLEAN idIs0 ( ideal h)

returns true if h is the zero ideal

Definition at line 959 of file simpleideals.cc.

960{
961 assume (h != NULL); // will fail :(
962// if (h == NULL) return TRUE;
963
964 for( int i = IDELEMS(h)-1; i >= 0; i-- )
965 if(h->m[i] != NULL)
966 return FALSE;
967
968 return TRUE;
969
970}

◆ idShow()

void idShow ( const ideal id,
const ring lmRing,
const ring tailRing,
const int debugPrint = 0 )

Definition at line 57 of file simpleideals.cc.

58{
59 assume( debugPrint >= 0 );
60
61 if( id == NULL )
62 PrintS("(NULL)");
63 else
64 {
65 Print("Module of rank %ld,real rank %ld and %d generators.\n",
66 id->rank,id_RankFreeModule(id, lmRing, tailRing),IDELEMS(id));
67
68 int j = (id->ncols*id->nrows) - 1;
69 while ((j > 0) && (id->m[j]==NULL)) j--;
70 for (int i = 0; i <= j; i++)
71 {
72 Print("generator %d: ",i); p_wrp(id->m[i], lmRing, tailRing);PrintLn();
73 }
74 }
75}
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373
void PrintLn()
Definition reporter.cc:310

◆ idSkipZeroes()

void idSkipZeroes ( ideal ide)

gives an ideal/module the minimal possible size

Definition at line 201 of file simpleideals.cc.

202{
203 assume (ide != NULL);
204
205 int k;
206 int j = -1;
207 int idelems=IDELEMS(ide);
209
210 for (k=0; k<idelems; k++)
211 {
212 if (ide->m[k] != NULL)
213 {
214 j++;
215 if (change)
216 {
217 ide->m[j] = ide->m[k];
218 ide->m[k] = NULL;
219 }
220 }
221 else
222 {
223 change=TRUE;
224 }
225 }
226 if (change)
227 {
228 if (j == -1)
229 j = 0;
230 j++;
231 pEnlargeSet(&(ide->m),idelems,j-idelems);
232 IDELEMS(ide) = j;
233 }
234}

◆ idSkipZeroes0()

int idSkipZeroes0 ( ideal ide)

Definition at line 236 of file simpleideals.cc.

237{
238 assume (ide != NULL);
239
240 int k;
241 int j = -1;
242 int idelems=IDELEMS(ide);
243
244 k=0;
245 while((k<idelems)&&(ide->m[k] != NULL)) k++;
246 if (k==idelems) return idelems;
247 // now: k: pos of first NULL entry
248 j=k; k=k+1;
249 for (; k<idelems; k++)
250 {
251 if (ide->m[k] != NULL)
252 {
253 ide->m[j] = ide->m[k];
254 ide->m[k] = NULL;
255 j++;
256 }
257 }
258 if (j<=1) return 1;
259 return j;
260}

Variable Documentation

◆ sip_sideal_bin

EXTERN_VAR omBin sip_sideal_bin

Definition at line 54 of file simpleideals.h.