FreeXL
1.0.6

Generated by Doxygen 1.9.1

1 Main Page

1.1 Introduction L e e e e e
2 The background story for FreeXL
3 File format specifications and source information

4 About the .xls binary format
4.1 CFBF . . e e e
4.2 BIFF . . e e e
4.3 BIFF . .
43 1RKvalues e
432Textvalues. L e e

4.3.3 Retrieving Date, DateTime and Timevalues.
5 Other tools and libraries

6 Data Structure Index

6.1 Data Structures e e e

7 File Index
7AFile List e e e

8 Data Structure Documentation
8.1 FreeXL_CellValue_str Struct Reference
8.1.1 Detailed Description
8.1.2 Field Documentation e
8.1.2.11type e
8.1.2.2 e

9 File Documentation

9.1 headers/freexl.h File Reference
9.1.1 Detailed Description
9.1.2 Macro Definition Documentation
9.1.2.1 FREEXL_BIFF_UNSELECTED _SHEET

9.1.2.2 FREEXL_CFBF_ILLEGAL_MINI_FAT ENTRY

9.1.23 FREEXL_CFBF_READ_ERROR i

9.1.24 FREEXL_CFBF_SEEK ERROR

9.1.25 FREEXL_ILLEGAL_MULRK_VALUE

9.1.2.6 FREEXL_ILLEGAL_RK_VALUE,

9.1.2.7 FREEXL_INVALID_MINI_STREAM i

9.1.3 Typedef Documentation L
9.1.8.1 FreeXL_CellValue e

9.1.4 Function Documentation

9.1.4.1freexl_close() e e

13

15
15

17
17

19
19
19
20
20
20

Generated by Doxygen

9.1.4.2 freex|_get_active_worksheet() L 28
9.1.4.3freexl_get_cell_value() 29
9.1.4.4freexl_get_FAT entry() o o o i 30
9.1.45freexl_get_info() L 31

9.1.46 freexl_get_SST_string()« o o v o o 32

9.1.4.7 freexl_get_worksheet_ name()o 32
9.1.4.8freexl_open() 33
9.1.49freexl_open_info() 33

9.1.4.10 freex|_select_active_worksheet() 34

9.1.4.11 freexl_version() 34

9.1.4.12 freex|_worksheet_dimensions() 34

10 Example Documentation 37
10.1test XI.C . . . e e e e 37
10.2XI2501.C e e e e e e e 44
Index 49

Generated by Doxygen

Chapter 1

Main Page

1.1 Introduction

FreeXL is an open source library to extract valid data from within an Excel (.xls) spreadsheet.

The FreeXL design goals are:

+ to be simple and lightweight
« to be stable, robust and efficient
+ to be easily and universally portable.

» completely ignore any GUI-related oddity

Note that the final goal means that FreeXL ignores at all fonts, sizes and alignments, and most formats. It ignores
Pivot Table, Charts, Formulas, Visual Basic macros and so on.

FreeXL is structurally simple and quite light-weight (typically 40-80K of object code, stripped). FreeXL has one key
dependency - GNU libiconv, which is used for character set conversions. This is often provided as part of the C
library on Linux systems, and is widely available.

Building and installing FreeXL is straightforward:

./configure
make
make install

Linking FreeXL to your own code is usually simple:
gcc my_program.c —-o my_program —-lfreexl
On some systems you may have to provide a slightly more complex arrangement:

gcc -I/usr/local/include my_program.c -o my_program \
-L/usr/local/lib -1freexl -liconv -1lm

FreeXL also provides pkg-config support, so you can also do:

Generated by Doxygen

2 Main Page

gcc —-I/usr/local/include my_program.c -o my_program ‘pkg-config --libs freexl®

| sincerely hope FreeXL could be useful to many of you. Excel x.xls spreadsheets are widespread, and although
Microsoft itself is strongly pushing the new XML based formats, there is still a lot of legacy data stored in the older
binary formats.

So in an era of open data, a simple and easy way to extract data from .xIs is surely useful. The original use of
FreeXL was to support the SQLite / SpatialLite VirtualXL driver (implementing direct access to .xls files via SQL).
However there are many other possibilities, including use with shell scripts and simple wrappers for Python, Perl
and other very high level languages.

FreeXL is licensed under the MPL tri-license terms: you are free to choose the best-fit license between:

« the MPL 1.1
+ the GPL v2.0 or any subsequent version

« the LGPL v2.1 or any subsequent version

Enjoy, and happy coding

Generated by Doxygen

Chapter 2

The background story for FreeXL

Where, when and why a new free software library was born...

At the end of April 2011 Markus Neteler [http://en.wikipedia.org/wiki/Markus_Neteler]and |
(Sandro) were in Udine in Northern ltaly, attending the annual Italian gvSIG Users conference. So, on a lovely hot
and sunny spring evening, accompanied by a picturesque sunset, we were sitting in the town centre in the pleasant
Piazza Matteotti aka Piazza San Giacomo, peacefully drinking some spritz while eating chips and peanuts.

Figure 2.1 Piazza

You'll have to admit, it was a really dangerous situation: as a general safety rule, never let two developers sit idle for
too long. Some odd and crazy idea will inevitably occur to them (of course, drinking too much spritz can contribute
as well).

Markus was desperately attempting to convince me that implementing a VirtualTable driver for SpatialLite supporting
direct SQL reading ofExcel .xIs files was a good initiative. Surely it would be useful for many users. | strongly
resisted, fiercely fighting and rejecting such idea, on the basis that attempting to read proprietary closed formats
such as Excel was a complete nonsense, and probably a very difficult if not impossible task.

At the end of this very animated discussion, Markus pronounced the magic spell that suddenly convinced me
about the absolute validity of his suggestions: [/ can raise some funding for this project After hearing such wise
and significant words from Markus | immediately realized that developing a new driver for accessing Excel .xIs
documents surely was an exciting and useful task after all.

So FreeXL / VirtualXL was conceived at that exact moment, and slowly began its development cycle.

Generated by Doxygen

http://en.wikipedia.org/wiki/Markus_Neteler

The background story for FreeXL

Generated by Doxygen

Chapter 3

File format specifications and source information

The .xls binary file format is extensively documented and is publicly available.

The most authoritative source is made available by Microsoft at http://msdn.microsoft.«
com/en—-us/library/cc313154%28v=0ffice.12%29.aspx

A simpler option is made available by Open Office: http://sc.openoffice.org/excelfileformat.«
pdf

Searching the web you'll easily find several other valuable information sources.

Generated by Doxygen

http://msdn.microsoft.com/en-us/library/cc313154%28v=office.12%29.aspx
http://msdn.microsoft.com/en-us/library/cc313154%28v=office.12%29.aspx
http://sc.openoffice.org/excelfileformat.pdf
http://sc.openoffice.org/excelfileformat.pdf

File format specifications and source information

Generated by Doxygen

Chapter 4

About the .xls binary format

What a .xls binary file really is
(Prepare yourself to be continuously surprised by many unexpected revelations ...)

You may already know that there are many different versions of .xls files. Different versions have different capa-
bilities. So we'll start by reviewing the Excel evolutionary history and and we'll introduce some Microsoft jargon
because it's central to understanding the underlying operations.

4.1 CFBF

Unexpected Revelation #1: There is no .xlIs file format. lts really a common file suffix applied to many different
things.

Recent Microsoft Office document files are based on a common container layout named CFBF (Compound File
Binary Format). This container format is the same for Excel (.xls), Word (.doc_ and PowerPoint (.ppt) amongst other
applications. More information:

* http://en.wikipedia.org/wiki/Compound_File Binary_Format

e http://msdn.microsoft.com/en-us/library/dd942138%28v=prot.13%29.aspx

Unexpected Revelation #2: CFBF is more of a file system than a file format

A CFBF file is divided into many equal-sized blocks named sectors. Such sectors cannot be directly accessed.
In order to retrieve sectors in the expected logical order a FAT (File Allocation Table) is allocated within the CFBF
file. A CFBF file is internally organized as if it was a raw physical disk. The design is based on Microsoft own FAT
file-system as used by MS-DOS and early versions of Windows. The first sector of the CFBF file acts as if it was a
kind-of MBR (Master Boot Record) - this first sector provides information about the layout and type of the CFBF file,
such as block/sector size and version. A FAT chain allows a reader to re-assemble the sectors in the required logical
order. There is a list of free block, and very large files may use a double indirection (DIFAT - Double Indirection FAT).
A CFBF file always has at least a root directory: but a complete directory tree can be provided.

A CFBF file can contain many and many distinct independent files. Just to make things a little clearer, Microsoft
calls such pseudo-files (I mean: the many fake ones contained within the real CFBF file) streams

The practical consequence is that any software tool attempting to access an Excel binary document must first be
able to correctly access this CFBF container format.

Generated by Doxygen

http://en.wikipedia.org/wiki/Compound_File_Binary_Format
http://msdn.microsoft.com/en-us/library/dd942138%28v=prot.13%29.aspx

8 About the .xlIs binary format

4.2 BIFF

Unexpected Revelation #3: An Excel document will contain a stream (pseudo-file) named Workbook in the root
directory of the CFBF file (filesystem).

The Workbook stream is internally structured accordingly to the BIFF (Binary Interchange File Format) specifica-
tions. You can think of the BIFF as the real Excel binary format (following more conventional naming rules). Several

BIFF versions were introduced during the years: and there are significant differences between them.

An useful correspondence table relating corresponding Excel and BIFF versions:

Excel Version | Commercial Name | BIFF Version | Release Year | Notes

2. Excel 2.0 BIFF2 1987 Before CFBF. File is the BIFF
stream, containing a single work-
sheet.

3.0 Excel 3.0 BIFF3 1990 Before CFBF. File is the BIFF
stream, containing a single work-
sheet.

4.0 Excel 4.0 BIFF4 1992 Before CFBF. File is the BIFF
stream, containing a single work-
sheet.

5.0 Excel 5.0 BIFF5 1993 Starting with BIFF5, a single

Workbook can internally store
many individual Worksheets. The
BIFF stream is stored in the CFBF
file container.

7.0 Excel 95 BIFF5 1995

8.0 Excel 98 BIFF8 1998

9.0 Excel 2000 BIFF8 1999

10.0 Excel XP BIFF8 2001

11.0 Excel 2003 BIFF8 2003

12.0 Excel 2007 BIFF8 2007 Introduced alternate XML format,
which is usually the default for new
files.

14.0 Excel 2010 BIFF8 2010 XML format is usually the default
for new files.

Note that FreeXL does not support the new XML format which is a completely different and unrelated format.

Perhaps you are now expecting that BIFF will simply and directly encode your spreadsheet data. Unfortunately, you
should have know better given the steps we took to get here...

Unexpected Revelation #4: Any BIFF stream (pseudo-file stored within a CFBF container file) is internally organized
as a collection of variable-length records..

Each record starts with

 a 16 bit unsigned integer specifying the record type

+ another 16 bit unsigned integer specifies the record data length (in bytes) excluding the standard type-size
prefix.

Note that there are many different record types, and the record size / layout may differ for different BIFF versions.

Three record types have an absolutely special meaning:

Generated by Doxygen

4.3 BIFF 9

» a BOF [Beginning Of File] record marks starting of a different sub-stream.
« an EOF [End Of File] record marks ending of current sub-stream.

» a CONTINUE record means that the previous record exceeded the maximum size for a record, and the
previous record data payload will be spanned on following CONTINUE records for as many CONTINUE
records as are required to store the full data size.

Unexpected Revelation #5: So a BIFF stream (pseudo-file) isn't really a file - it's more like a collection of individual
sub-streams, each one of which is enclosed between BOF / EOF markers.

The most recent BIFF8 requires that at least the following internal sub-streams are be defined:

« the first sub-stream contains workbook level global data and metadata, such as author, password protection,
styles, formats, window settings and so on

« list of individual worksheets included into the Workbook, where each worksheet is identified by a name and
by a type (data Worksheet, Chart, Visual Basic module ... visible, hidden ...), and relative offset position of
the corresponding BOF record allows for fast positioning.

* any text string is stored here into the SST [Shared String Table], so individual text cells simply refer the corre-
sponding SST entry by index (in all previous BIFF version text strings are directly stored into the appropriate
cell).

+ any subsequent sub-stream represents a single Worksheet, and the most relevant data stored at Worksheet
level are dimension (number of valid rows and columns) and any cell value data.

We will now see how BIFF encodes individual data types with several further amazing surprises are still to come.
Be prepared!

4.3 BIFF

Leaving aside special values such as images, OLE, COM, Visual Basic related items and so on, the basic data
types are supported in BIFF:

* text strings
» numbers (both integers and decimals)
« dates, date-times and times

* NULL (empty cell)

Note that any multi-byte value is stored in BIFF accordingly using Little Endian byte ordering (i.e. least significant
byte comes first, most significant byte comes last).

BIFF Record Type | BIFF Version Content Type

INTEGER BIFF2 16 bit unsigned integer

NUMBER BIFF2 BIFF3 BIFF4 BIFF5 BIFF8 | 64 bit floating point (double precision)

RK BIFF3 BIFF4 BIFF5 BIFF8 number, variant-type: INTEGER FLOAT DATE

DATETIME TIME (please see the corresponding de-
tailed description)

MULRK BIFF5 BIFF8 a variable-sized array of elementary RK values. as-
sociated to a range of consecutive cells on the same
row

GdnérBiEd by Doxygen BIFF2 BIFF3 BIFF4 BIFF5 BIFF8 | text string, variable-length. (please see the corre-
sponding detailed description)

LABELSST BIFF8 text string, variable-length. based on the global SST

[Shared String Table] stored at the workbook level,

ol A TSI NN v R T

10 About the .xIs binary format

So the BIFF record type that is easy to handle is NUMBER, which is essentially a C-style double. Other record
types require additional handling.

4.3.1 RK values

An RK value is a 32 bit value.

The least significant two bits are a bit-mask (in little endian order, so the least two significant bits in the first byte that
is read):

« if 0x02 is set the RK value represents a 30 bit signed integer, otherwise it represents a 64 bit floating point
double precision number requiring special reconstruction.

« if Ox01 is set the corresponding value needs to be divided by 100, so even an integer actually becomes a
floating point double precision.

When interpreting RK values as a signed integer, right shifting two bits is required:

int value = rk_value » 2;

When interpreting RK values as a 64 bit floating point, two steps are required:

+ the RK value requires appropriate masking:
int value = rk_value & Oxfffffffc;

« then the 32 bit value will be copied into a 64 bit buffer, and the least significant four bytes need to be initialized
as zeroes: 0x00000000.

As a final step, if 0x01 was set into the bit-mask, now we have to divide by 100 before returning the effective cell
value. So for 32 bit integers:
double final_value = (double)value / 100.0;

and for 64 bit floats:

double final_value = value / 100.0;

4.3.2 Text values

Any BIFF version from BIFF2 to BIFF5 simply supports CodePage based character encoding, i.e. each character
simply requires 8 bits to be represented (single byte). Correct representation of characters requires knowing which
one CodePage table has to be applied. This can be determined from the workbook or worksheet metadata (it is the
CODEPAGE record).

BIFF8 is much more sophisticated, since any text string is usually encoded as Unicode in UTF-16 Little Endian
[UTF-16LE] format. This encoding is a multi-byte encoding (two bytes are required to represent a single character),
but being universal no character table is required.

BIFF text strings are never null-terminated. The actual length is always explicitly stated, as an 8 bit unsigned int or
as a 16 bit unsigned int (depending on BIFF versions).

FreeXL is intended to be strictly interoperable with SQLite and SpatiaLite, so any text string has to be converted
to UTF-8 encoding. GNU libiconv can easily handle any required charset conversion. So we can simply fetch
the appropriate bytes, then call iconv() as appropriate, and we'll immediately get back the corresponding UTF-8
encoded text string.

Converting Unicode based text strings is a little more complex, because each Unicode string is prefixed by a mask
byte, specifying how the string is encoded:

« if Ox01 is set, then the string really is 16 bit per character Unicode, otherwise a stripped notation is used
instead. Stripped notation means that the characters are actually represented as single bytes, so already
have the UTF8 equivalent.

« if 0x04 and/or 0x08 are set, than some further variable-length data (providing information on text decoration
such as italics, bold, underline) is inserted immediately before and after the text string itself, so we must
carefully skip over this extra data so to maintain the right byte alignment.

Note that the string length is expressed in characters, not in bytes, so the actual length in bytes is twice the indicated
length.

Generated by Doxygen

4.3 BIFF 11

4.3.3 Retrieving Date, DateTime and Time values.

Dates, DateTimes and Time values are also a little complicated. Any Date is expressed as an Integer (number of
days since the conventional reference day):

 for Windows Excel the reference day (day 0) is 1900, January 1

« for Mac Excel the reference day (day 0) is 1904, January 2

There is no possible ambiguity, because the DATEMODE metadata record specifies tells which reference day is to
be used.

An odd bug affects Excel, which (incorrectly) treats 1900 as a leap year. Therefore, the non-existent 29 February
1900 has to be included in the days calculation so to get the expected Date value.

Any Time is expressed as a Fraction (percent of seconds since midnight). 0.5 corresponds to 12:00:00 (midday),
0.25 corresponds to 06:00:00, 0.75 corresponds to 18:00:00 and so on.

So a DateTime is simply the sum of a Date value and of a Time value. Dates can be represented by Integers: but
Times and DateTimes require a floating point number.

The complication with Dates, DateTimes and Time values is that the data-type does not specify when a cell values
has to be interpreted as a Date or Time - it is simply an Integer or Float numbers like any other. A further indirection
has to applied so to correctly recognize Dates, DateTimes and Times:

« each NUMBER, RK or MULRK value exposes an index referencing the XF (Extended Format) entry associ-
ated with the corresponding cell.

» each XF record specifies an unique combination of font, alignment, color and so on, however a further indi-
rection specifies the corresponding FORMAT entry

» each FORMAT record specifies an output format, such as M/D/YY, h:mm:ss AM/PM or M/D/YY h:mm: and
this finally gives us a good chance to guess which cell values are intended to represent Date/Time values.

Both XF and FORMAT records are globally stored at the Workbook level, and represent ordered arrays.

If you haven't yet given up, if you aren't yet become totally mind-boggled, and if you are still awake and conscious,
then you now know how .xls files are internally organized and structured.

Be happy and feel proud of yourself.

Generated by Doxygen

12

About the .xlIs binary format

Generated by Doxygen

Chapter 5

Other tools and libraries

There an impressively wide choice of Free and open source libraries and tools supporting the .xIs format.

A sample:

* Gnumeric[http://projects.gnome.org/gnumeric/] seems to be the pioneer of them all, and
probably was the first FLOSS tool able to read and write .xls (circa 2001). Part of the Gnome Office project.

» KSpread / Caligra Tables [http://www.calligra-suite.org/tables/] / KCells [http«
://www.koffice.org/kcells/]are similar (but now distinct) programs from the KOffice and Calligra
Office projects.

* Open Office Calc [http://www.openoffice.org/product/calc.html] and LibreOffice Calc
[http://www.libreoffice.org/features/calc/] are similar (but now distinct) spreadsheet
applications originally from the StartOffice code base. Probably the most comprehensive support in FLOSS.

» Apache POI-HSSF [http://poi.apache.org/spreadsheet/index.html] is a sophisticated
Java library fully supporting .xIs files.

* JExcelAPI [http://jexcelapi.sourceforge.net/] is another Java library (much simpler and
lighter than POI-HSSF) supporting .xIs files.

« several C or C++ libraries exist as well: quite curiously one is named libxls and another xlslib, but they are
two absolutely distinct and unrelated packages

» There are other implementations are available based on .NET or PHP.

A quick critical review:

» GUI tools implementations are difficult to re-use. They focus on import of all formulas, GUI presentation and
so on, which is really a different use.

+ Java libraries seem to be really interesting, but Java is difficult to call from a C or C++ program.

« Several C/C++ libraries exist, but none of them seems to be sufficient and stable as required. Some are still
marked to be “beta-stage” despite being released some four or five years ago - project activity seems to be
very low, and download statistics are discouraging.

Conclusion: a suitable C/C++ library supporting data extraction from .xls files doesn't seem to exists: or at least,
there is no obvious reference choice.

So we'll go on the hardest way, we'll develop yet another .xIs reading library: FreeXL.

Generated by Doxygen

http://projects.gnome.org/gnumeric/
http://www.calligra-suite.org/tables/
http://www.koffice.org/kcells/
http://www.koffice.org/kcells/
http://www.openoffice.org/product/calc.html
http://www.libreoffice.org/features/calc/
http://poi.apache.org/spreadsheet/index.html
http://jexcelapi.sourceforge.net/

14

Other tools and libraries

Generated by Doxygen

Chapter 6

Data Structure Index

6.1 Data Structures

Here are the data structures with brief descriptions:

FreeXL_CellValue_str
Containerforacellvalue e

Generated by Doxygen

16

Data Structure Index

Generated by Doxygen

Chapter 7

File Index

7.1 File List

Here is a list of all documented files with brief descriptions:

headers/freexl.h
Function declarations and constants for FreeXL library

Generated by Doxygen

18

File Index

Generated by Doxygen

Chapter 8

Data Structure Documentation

8.1 FreeXL_CellValue_str Struct Reference

Container for a cell value.

#include <freexl.h>

Data Fields

 unsigned char type

The type of data stored in this cell.
* union {
int int_value
if type is FREEXL_CELL _INT, then the corresponding value will be returned as int_value
double double_value
if type is FREEXL_CELL_DOUBLE, then the corresponding value will be returned as double_value
const char * text_value
iftype is FREEXL_CELL_TEXT, FREEXL_CELL_SST_TEXT, FREEXL _CELL DATE, FREEXL_CELL_DATETIME or FRE
} value

The value of the data stored in the cell.

8.1.1 Detailed Description

Container for a cell value.

freexl_get_cell_value() takes a pointer to this structure, and fills in the appropriate values.
FreeXL_CellValue val;
freexl _get_cell_value(..., &val);
switch (val.type)
{
FREEXL_CELL_INT:
printf (" Int:%d\n" , val.value.int_value;
> reak;
FREEXL_CELL_DOUBLE:
printf ("Double=%1. 2f\n" , val.value.double_value;
reak;
ase FREEXL_CELL_TEXT:
;e FREEXL_CELL_SST_TEXT:
printf ("Text='%s’ \n" , val.value.text_value;
oreak;

FREEXL_CELL_DATE:

Generated by Doxygen

20 Data Structure Documentation

FREEXL_CELL_DATETIME:
FREEXL_CELL_TIME:
printf("DateOrTime='%s’\n", val.value.text_value;

i
FREEXL_CELL_NULL:
printf ("NULL\n");

printf("Invalid data-type\n");
;

}

Examples

xI2sql.c.

8.1.2 Field Documentation

8.1.2.1 type

unsigned char FreeXL_CellValue_str::type
The type of data stored in this cell.

Can be one of the following:

* FREEXL_CELL_NULL the cell contains a NULL value.
* FREEXL_CELL_INT the cell contains an INTEGER value.
* FREEXL_CELL_DOUBLE the cell contains a DOUBLE value.

FREEXL_CELL_TEXT or FREEXL_CELL_SST_TEXT the cell contains a text string (always UTF-8 encoded)
* FREEXL_CELL_DATE the cell contains a date, encoded as a 'YYYY-MM-DD' string value

+ FREEXL_CELL_DATETIME the cell contains a date and time, encoded as a 'YYYY-MM-DD HH:MM:SS' string
value

FREEXL_CELL_TIME the cell contains a time, encoded as a 'HH:MM:SS' string value

Examples

x|2sql.c.

8.1.2.2

union { ... } FreeXL_CellValue_str::value
The value of the data stored in the cell.

Which part of the union is valid is determined by the type value.

Examples

x|2sql.c.
The documentation for this struct was generated from the following file:

* headers/freexl.h

Generated by Doxygen

Chapter 9

File Documentation

9.1 headers/freexl.h File Reference

Function declarations and constants for FreeXL library.

Data Structures

« struct FreeXL_CellValue_str

Container for a cell value.

Macros

+ #define FREEXL_UNKNOWN 0

query is not applicable, or information is not available
» #define FREEXL CFBF VER 33

CFBF file is version 3.
» #define FREEXL_CFBF_VER 44

CFBF file is version 4.
« #define FREEXL CFBF_SECTOR_512 512

CFBF file uses 512 byte sectors.
» #define FREEXL_CFBF_SECTOR_4096 4096

CFBF file uses 4096 (4K) sectors.
« #define FREEXL BIFF VER 22

BIFF file is version 2.

» #define FREEXL_BIFF_VER_3 3
BIFF file is version 3.

» #define FREEXL_BIFF_VER 4 4

BIFF file is version 4.
» #define FREEXL BIFF VER 55

BIFF file is version 5.

» #define FREEXL_BIFF_VER_8 8
BIFF file is version 9.

» #define FREEXL_BIFF_MAX_RECSZ_2080 2080
Maximum BIFF record size is 2080 bytes.

Generated by Doxygen

22

File Documentation

#define FREEXL_BIFF_MAX_RECSZ_8224 8224

Maximum BIFF record size is 8224 bytes.
#define FREEXL_BIFF_DATEMODE_1900 1900

BIFF date mode starts at 1 Jan 1900.
#define FREEXL_BIFF_DATEMODE_1904 1904

BIFF date mode starts at 2 Jan 1904.
#define FREEXL_BIFF_OBFUSCATED 3003

BIFF file is password protected.
#define FREEXL_BIFF_PLAIN 3004

BIFF file is not password protected.
#define FREEXL_BIFF_ASCII 0x016F

BIFF file uses plain ASCII encoding.
#define FREEXL_BIFF_CP437 0x01B5

BIFF file uses CP437 (OEM US format) encoding.
#define FREEXL_BIFF_CP720 0x02D0

BIFF file uses CP720 (Arabic DOS format) encoding.
#define FREEXL_BIFF_CP737 0x02E1

BIFF file uses CP737 (Greek DOS format) encoding.
#define FREEXL_BIFF_CP775 0x0307

BIFF file uses CP775 (Baltic DOS format) encoding.
#define FREEXL_BIFF_CP850 0x0352

BIFF file uses CP850 (Western Europe DOS format) encoding.
#define FREEXL_BIFF_CP852 0x0354

BIFF file uses CP852 (Central Europe DOS format) encoding.
#define FREEXL_BIFF_CP855 0x0357

BIFF file uses CP855 (OEM Cyrillic format) encoding.
#define FREEXL_BIFF_CP857 0x0359

BIFF file uses CP857 (Turkish DOS format) encoding.
#define FREEXL_BIFF_CP858 0x035A

BIFF file uses CP858 (OEM Multiligual Latin 1 format) encoding.

#define FREEXL_BIFF_CP860 0x035C

BIFF file uses CP860 (Portuguese DOS format) encoding.
#define FREEXL_BIFF_CP861 0x035D

BIFF file uses CP861 (Icelandic DOS format) encoding.
#define FREEXL_BIFF_CP862 0x035E

BIFF file uses CP862 (Hebrew DOS format) encoding.
#define FREEXL_BIFF_CP863 0x035F

BIFF file uses CP863 (French Canadian DOS format) encoding.
#define FREEXL_BIFF_CP864 0x0360

BIFF file uses CP864 (Arabic DOS format) encoding.
#define FREEXL_BIFF_CP865 0x0361

BIFF file uses CP865 (Nordic DOS format) encoding.
#define FREEXL_BIFF_CP866 0x0362

BIFF file uses CP866 (Cyrillic DOS format) encoding.
#define FREEXL_BIFF_CP869 0x0365

BIFF file uses CP869 (Modern Greek DOS format) encoding.
#define FREEXL_BIFF_CP874 0x036A

BIFF file uses CP874 (Thai Windows format) encoding.
#define FREEXL_BIFF_CP932 0x03A4

BIFF file uses CP932 (Shift JIS format) encoding.
#define FREEXL_BIFF_CP936 0x03A8

Generated by Doxygen

9.1 headers/freexl.h File Reference

23

BIFF file uses CP936 (Simplified Chinese GB2312 format) encoding.

+ #define FREEXL_BIFF_CP949 0x03B5

BIFF file uses CP949 (Korean) encoding.
« #define FREEXL BIFF_CP950 0x03B6

BIFF file uses CP950 (Traditional Chinese Big5 format) encoding.
» #define FREEXL BIFF_UTF16LE 0x04B0

BIFF file uses Unicode (UTF-16LE format) encoding.
» #define FREEXL_BIFF_CP1250 0x04E2

BIFF file uses CP1250 (Central Europe Windows) encoding.
» #define FREEXL BIFF_CP1251 0x04E3

BIFF file uses CP1251 (Cyrillic Windows) encoding.
» #define FREEXL_BIFF_CP1252 0x04E4

BIFF file uses CP1252 (Windows Latin 1) encoding.
» #define FREEXL_BIFF_CP1253 0x04E5

BIFF file uses CP1252 (Windows Greek) encoding.
» #define FREEXL_BIFF_CP1254 0x04E6

BIFF file uses CP1254 (Windows Turkish) encoding.
« #define FREEXL BIFF_CP1255 0x04E7

BIFF file uses CP1255 (Windows Hebrew) encoding.
» #define FREEXL_BIFF_CP1256 0x04E8

BIFF file uses CP1256 (Windows Arabic) encoding.
» #define FREEXL_BIFF_CP1257 0x04E9

BIFF file uses CP1257 (Windows Baltic) encoding.
» #define FREEXL_BIFF_CP1258 0x04EA

BIFF file uses CP1258 (Windows Vietnamese) encoding.
» #define FREEXL_BIFF_CP1361 0x0551

BIFF file uses CP1361 (Korean Johab) encoding.
» #define FREEXL_BIFF_MACROMAN 0x2710

BIFF file uses Mac Roman encoding.
+ #define FREEXL_CELL_NULL 101

Cell has no value (empty cell)
» #define FREEXL_CELL_INT 102

Cell contains an integer value.

+ #define FREEXL_CELL_DOUBLE 103

Cell contains a floating point number.
» #define FREEXL_CELL_TEXT 104

Cell contains a text value.
« f#define FREEXL CELL_SST TEXT 105

Cell contains a reference to a Single String Table entry (BIFF8)
» #define FREEXL_CELL_DATE 106

Cell contains a number intended to represent a date.
+ #define FREEXL_CELL_DATETIME 107

Cell contains a number intended to represent a date and time.
» #define FREEXL_CELL_TIME 108

Cell contains a number intended to represent a time.
» #define FREEXL_CFBF_VERSION 32001

Information query for CFBF version.
» #define FREEXL_CFBF_SECTOR_SIZE 32002

Information query for CFBF sector size.
» #define FREEXL_CFBF_FAT_COUNT 32003

Information query for CFBF FAT entry count.

Generated by Doxygen

24

File Documentation

#define FREEXL_BIFF_VERSION 32005
Information query for BIFF version.
#define FREEXL_BIFF_MAX_RECSIZE 32006
Information query for BIFF maximum record size.
#define FREEXL_BIFF_DATEMODE 32007
Information query for BIFF date mode.
#define FREEXL_BIFF_PASSWORD 32008
Information query for BIFF password protection state.
#define FREEXL_BIFF_CODEPAGE 32009
Information query for BIFF character encoding.
#define FREEXL_BIFF_SHEET_COUNT 32010
Information query for BIFF sheet count.
#define FREEXL_BIFF_STRING_COUNT 32011
Information query for BIFF Single String Table entry count (BIFF8)
#define FREEXL_BIFF_FORMAT_COUNT 32012
Information query for BIFF format count.
#define FREEXL_BIFF_XF_COUNT 32013
Information query for BIFF extended format count.
#define FREEXL_OK 0
No error, success.
#define FREEXL_FILE_NOT_FOUND -1
.xIs file does not exist or is not accessible for reading
#define FREEXL_NULL_HANDLE -2
Null xIs_handle argument.
#define FREEXL_INVALID_HANDLE -3
Invalid xIs_handle argument.
#define FREEXL_INSUFFICIENT_MEMORY -4
some kind of memory allocation failure
#define FREEXL_NULL_ARGUMENT -5
an unexpected null argument
#define FREEXL_INVALID_INFO_ARG -6
invalid "what" parameter
#define FREEXL_INVALID_CFBF_HEADER -7
the .xIs file does not contain a valid CFBF header
#define FREEXL_CFBF_READ_ERROR -8
Read error.
#define FREEXL_CFBF_SEEK_ERROR -9
Seek error.
#define FREEXL_CFBF_INVALID_SIGNATURE -10
The .xls file does contain a CFBF header, but the header is broken or corrupted in some way.
#define FREEXL_CFBF_INVALID_SECTOR_SIZE -11
The .xls file does contain a CFBF header, but the header is broken or corrupted in some way.
#define FREEXL_CFBF_EMPTY_FAT_CHAIN -12
The .xls file does contain a CFBF header, but the header is broken or corrupted in some way.
#define FREEXL_CFBF_ILLEGAL_FAT_ENTRY -13
The file contains an invalid File Allocation Table record.
#define FREEXL_BIFF_INVALID_BOF -14
The file contains an invalid BIFF format entry.
#define FREEXL_BIFF_INVALID_SST -15

The file contains an invalid Single String Table.
#define FREEXL_BIFF_ILLEGAL_SST_INDEX -16

Generated by Doxygen

9.1 headers/freexl.h File Reference 25

The requested Single String Table entry is not available.
» #define FREEXL_BIFF_WORKBOOK_NOT_FOUND -17

BIFF does not contain a valid workbook.
« f#define FREEXL BIFF _ILLEGAL_SHEET INDEX -18

The requested worksheet is not available in the workbook.
« #define FREEXL BIFF_UNSELECTED_SHEET -19

There is no currently active worksheet.
» #define FREEXL INVALID_CHARACTER -20

Charset conversion detected an illegal character (not within the declared charset)
» #define FREEXL UNSUPPORTED_CHARSET -21

The requested charset conversion is not available.
» #define FREEXL_ILLEGAL_CELL_ROW_COL -22

The requested cell is outside the valid range for the sheet.
+ #define FREEXL_ILLEGAL_RK_VALUE -23

Conversion of the RK value failed.
» #define FREEXL ILLEGAL MULRK_VALUE -23

Conversion of the MULRK value failed.
» #define FREEXL INVALID MINI_STREAM -24

The MiniFAT stream is invalid.
« ##define FREEXL CFBF_ILLEGAL_MINI_FAT _ENTRY -25

The MiniFAT stream contains an invalid entry.
» #define FREEXL_CRAFTED_FILE -26

A severely corrupted file (may be purposely crafted for malicious purposes) has been detected.

Typedefs

+ typedef struct FreeXL_CellValue_str FreeXL_CellValue

Typedef for cell value structure.

Functions

+ FREEXL_DECLARE const char * freexl_version (void)
Return the current library version.
+ FREEXL_DECLARE int freexl_open (const char *path, const void *xxls_handle)
Open the .xls file, preparing for future functions.
+ FREEXL_DECLARE int freexl_open_info (const char xpath, const void *xxIs_handle)
Open the .xls file for metadata query only.
+ FREEXL_DECLARE int freexl_close (const void *xls_handle)
Close the .xIs file and releasing any allocated resource.
+ FREEXL_DECLARE int freexl_get_info (const void *xIs_handle, unsigned short what, unsigned int xinfo)
Query general information about the Workbook and Worksheets.
+ FREEXL_DECLARE int freex|_get_worksheet_name (const void *xIs_handle, unsigned short sheet_index,
const char xxstring)
Query worksheet name.
+ FREEXL_DECLARE int freex|_select_active_worksheet (const void *xls_handle, unsigned short sheet «
index)
Set the currently active worksheets.
+ FREEXL_DECLARE int freexl_get_active_worksheet (const void *xIs_handle, unsigned short xsheet_index)

Query the currently active worksheet index.

Generated by Doxygen

26 File Documentation

+ FREEXL_DECLARE int freexl_worksheet_dimensions (const void *xIs_handle, unsigned int xrows, unsigned
short xcolumns)

Query worksheet dimensions.
+ FREEXL_DECLARE int freex|_get SST_string (const void *xIs_handle, unsigned short string_index, const
char xxstring)

Retrieve string entries from SST.
+ FREEXL_DECLARE int freexl_get FAT_entry (const void *xIs_handle, unsigned int sector_index, unsigned
int xnext_sector_index)

Retrieve FAT entries from FAT chain.
+ FREEXL_DECLARE int freexl_get_cell_value (const void *xls_handle, unsigned int row, unsigned short col-
umn, FreeXL_CellValue xvalue)

Retrieve individual cell values from the currently active worksheet.

9.1.1 Detailed Description

Function declarations and constants for FreeXL library.

9.1.2 Macro Definition Documentation

9.1.2.1 FREEXL_BIFF_UNSELECTED_SHEET

#define FREEXL_BIFF_UNSELECTED_SHEET -19
There is no currently active worksheet.

Possibly a forgotten call to freexl_select_active_worksheet()

9.1.2.2 FREEXL_CFBF_ILLEGAL_MINI_FAT_ENTRY

#define FREEXL_CFBF_ILLEGAL_MINI_FAT_ENTRY -25
The MiniFAT stream contains an invalid entry.

Possibly a corrupt file.

9.1.2.3 FREEXL_CFBF_READ_ERROR

#define FREEXL_CFBF_READ_ERROR -8
Read error.

Usually indicates a corrupt or invalid .xIs file

Generated by Doxygen

9.1 headers/freexl.h File Reference

27

9.1.2.4 FREEXL_CFBF_SEEK_ERROR

#define FREEXL_CFBF_SEEK_ERROR -9
Seek error.

Usually indicates a corrupt or invalid .xIs file

9.1.2.5 FREEXL_ILLEGAL_MULRK_VALUE

#define FREEXL_ILLEGAL_MULRK_VALUE -23
Conversion of the MULRK value failed.

Possibly a corrupt file or a bug in FreeXL.

9.1.2.6 FREEXL_ILLEGAL_RK_VALUE

#define FREEXL_ILLEGAL_RK_VALUE -23
Conversion of the RK value failed.

Possibly a corrupt file or a bug in FreeXL.

9.1.2.7 FREEXL_INVALID_MINI_STREAM

#define FREEXL_INVALID_MINI_STREAM -24
The MiniFAT stream is invalid.

Possibly a corrupt file.

9.1.3 Typedef Documentation

9.1.3.1 FreeXL_CellValue

typedef struct FreeXL_CellValue_str FreeXL_CellValue

Typedef for cell value structure.

See also

FreeXL_CellValue_str

9.1.4 Function Documentation

9.1.4.1 freexl_close()

FREEXL_DECLARE int freexl_close (

const void *x x1s_handle)

Close the .xls file and releasing any allocated resource.

Generated by Doxygen

28 File Documentation

Parameters

xlIs_handle | the handle previously returned by freex|_open() ‘

Returns

FREEXL_OK will be returned on success

Note

After calling freex|_close() any related resource will be released, and the handle will no longer be valid.

Examples

test_xl.c, and xI2sql.c.

9.1.4.2 freexl_get_active_worksheet()

FREEXL_DECLARE int freexl_get_active_worksheet (
const void *x x1s_handle,

unsigned short * sheet_index)

Query the currently active worksheet index.

Parameters

xIs_handle the handle previously returned by freex|_open()

sheet _index | the index corresponding to the currently active Worksheet (return value)

Returns

FREEXL_OK will be returned on success

See also

freex|_select_active_worksheet() for how to select the worksheet

Examples

test_xl.c.

Generated by Doxygen

9.1 headers/freexl.h File Reference

29

9.1.4.3 freexl_get_cell_value()

FREEXL_DECLARE int freexl get_cell_value (
const void * x1s _handle,
unsigned int row,
unsigned short column,

FreeXL_CellValue * value)

Retrieve individual cell values from the currently active worksheet.

Generated by Doxygen

30

File Documentation

Parameters
xlIs_handle | the handle previously returned by freex|_open()
row row number of the cell to query (zero base)
column column number of the cell to query (zero base)
value the cell type and value (return value)

Returns

FREEXL_OK will be returned on success

Examples

xI2sql.c.

9.1.4.4 freexl_get_FAT_entry()

FREEXL_DECLARE int freexl_get_FAT_entry (

const void *x x1s_handle,

unsigned int sector_index,

unsigned int * next_sector_index)

Retrieve FAT entries from FAT chain.

Parameters

xlIs_handle

the handle previously returned by freex|_open()

sector_index

the index identifying the Sector entry (base 0).

next_sector_index | the index identifying the next Sector to be accessed in logical order (return value).

Note

The following values imply special meaning:

« Oxffffffff free / unused sector

« Oxfffffffe end of chain

« Oxfffffffd sector used by FAT (map of sectors)

« Oxfffffffc double-indirect FAT sector (map of FAT sectors)

Returns

FREEXL_OK will be returned on success

Note

This function is not normally required, since FreeXL will handle FAT table entries transparent to the user. It is
mainly intended for debugging purposes.

Examples

test_xl.c.

Generated by Doxygen

9.1 headers/freexl.h File Reference

9.1.4.5 freexl_get_info()

FREEXL_DECLARE int freexl_ _get_info (

const void * x1s _handle,
unsigned short what,

unsigned int * info)

Query general information about the Workbook and Worksheets.

Parameters
xlIs_handle | the handle previously returned by freex|_open()
what the info to be queried.
info the corresponding information value (return value)
Note

FREEXL_UNKNOWN will be returned in info if the information is not available, not appropriate or not sup-
ported for the file type.

Returns

FREEXL_OK will be returned on success

Valid values for what are:

FREEXL_CFBF_VERSION (returning FREEXL_CFBF_VER_3 or FREEXL_CFBF_VER_4)

FREEXL_CFBF_SECTOR_SIZE (returning FREEXL_CFBF_SECTOR_512 or FREEXL_CFBF_SECTOR«-
_4096)

FREEXL_CFBF_FAT_COUNT (returning the total count of FAT entries in the file)

FREEXL_BIFF_VERSION (return one of FREEXL_BIFF_VER_2, FREEXL_BIFF_VER_3, FREEXL_BIFF«
_VER_4, FREEXL_BIFF_VER_5, FREEXL_BIFF_VER_8)

FREEXL BIFF_MAX_RECSIZE (returning FREEXL_BIFF_MAX_RECSZ_2080 or FREEXL_BIFF_MAX_«
RECSZ_8224)

FREEXL_BIFF_DATEMODE (returning FREEXL_BIFF_DATEMODE_1900 or FREEXL_BIFF_DATEMODE«
_1904)

FREEXL_BIFF_PASSWORD (returning FREEXL_BIFF_OBFUSCATED or FREEXL_BIFF_PLAIN)

FREEXL_BIFF_CODEPAGE (returning FREEXL_BIFF_ASCII, one of FREEXL_BIFF_CPx*,FREEXL_BIFF:-
_UTF16LE or FREEXL_BIFF_MACROMAN)

FREEXL_BIFF_SHEET_COUNT (returning the total number of worksheets)
FREEXL_BIFF_STRING_COUNT (returning the total number of Single String Table entries)
FREEXL_BIFF_FORMAT_COUNT (returning the total number of format entries)
FREEXL_BIFF_XF_COUNT (returning the number of extended format entries)

Examples

test_xl.c, and xI2sql.c.

Generated by Doxygen

32 File Documentation

9.1.4.6 freexl_get_SST_string()

FREEXL_DECLARE int freexl get_SST_string (
const void * x1s _handle,
unsigned short string_ index,

const char **x string)

Retrieve string entries from SST.

Parameters

xIs_handle the handle previously returned by freex|_open()

string_index | the index identifying the String entry (base 0).

string the corresponding String value (return value)

Returns

FREEXL_OK will be returned on success

Note

This function is not normally required, since freexl_get_cell_value will return the string where appropriate. It
is mainly intended for debugging purposes.

Examples

test_xl.c.

9.1.4.7 freexl_get_worksheet_name()

FREEXL_DECLARE int freexl_get_worksheet_name (
const void *x x1s_handle,
unsigned short sheet_index,

const char *x string)

Query worksheet name.

Parameters

xIs_handle the handle previously returned by freex|_open()

sheet _index | the index identifying the worksheet (base 0)

string the name of the worksheet (return value)

Returns
FREEXL_OK will be returned on success
Examples

test_xl.c, and xI2sql.c.

Generated by Doxygen

9.1 headers/freexl.h File Reference 33

9.1.4.8 freexl_open()

FREEXL_DECLARE int freexl_open (
const char * path,

const void **x xls_handle)

Open the .xls file, preparing for future functions.

Parameters

path full or relative pathname of the input .xIs file.

xlIs_handle | an opaque reference (handle) to be used in each subsequent function (return value).

Returns

FREEXL_OK will be returned on success, otherwise any appropriate error code on failure.

Note

You are expected to freex|_close() even on failure, so as to correctly release any dynamic memory allocation.

Examples

test_xl.c, and xI2sq|.c.

9.1.4.9 freexl_open_info()

FREEXL_DECLARE int freexl_open_info (
const char * path,

const void *xx x1s_handle)
Open the .xls file for metadata query only.

This is similar to freex|_open(), except that an abbreviated parsing step is performed. This makes it faster, but does
not support queries for cell values.

Parameters

path full or relative pathname of the input .xIs file.

xlIs_handle | an opaque reference (handle) to be used in each subsequent function (return value).

Returns

FREEXL_OK will be returned on success, otherwise any appropriate error code on failure.

Generated by Doxygen

34 File Documentation

Note

You are expected to freex|_close() even on failure, so as to correctly release any dynamic memory allocation.

9.1.4.10 freexl_select_active_worksheet()

FREEXL_DECLARE int freexl_select_active_worksheet (
const void * x1s_handle,

unsigned short sheet_index)
Set the currently active worksheets.

Within a FreeXL handle, only one worksheet can be active at a time. Functions that fetch data are implictly working
on the selected worksheet.

Parameters

xls_handle | the handle previously returned by freex|_open()

sheet_index | the index identifying the worksheet (base 0)

Returns

FREEXL_OK will be returned on success

Examples

test_xl.c, and xI2sql.c.

9.1.4.11 freexl_version()
FREEXL_DECLARE const charx freexl_version (
void)

Return the current library version.

Returns

the version string.

9.1.4.12 freexl_worksheet_dimensions()

FREEXL_DECLARE int freexl_worksheet_dimensions (
const void *x x1s_handle,
unsigned int * rows,

unsigned short * columns)
Query worksheet dimensions.

This function returns the number of rows and columns for the currently selected worksheet.

Generated by Doxygen

9.1 headers/freexl.h File Reference 35

Parameters

xlIs_handle | the handle previously returned by freex|_open()

rows the total row count (return value)
columns the total column count (return value)
Returns

FREEXL_OK will be returned on success

Note

Worksheet dimensions are zero based, so if you have a worksheet that is four columns and two rows (i.e. from
A1 in the top left corner to B4 in the bottom right corner), this will return rows equal to 1 and columns equal to
3). This is to support C style looping.

Examples

test_xl.c, and xI2sq|.c.

Generated by Doxygen

36

File Documentation

Generated by Doxygen

Chapter 10

Example Documentation

10.1 test xl.c

test_xl.c is a simple demonstration and diagnostic tool for the Excel (.xls) file format.This sample code provides an
example of:

» opening the .xIs file

+ querying general information

» querying Workbooks, SST entries and FAT entries
+ error handling

* closing the .xIs file when no further operations are required
Here is an example of a typical run:

./test_x1 multi.xls

Excel document: multi.xls

CFBF Version: 3

CFBF Sector size: 512

CFBF FAT entries: 128

BIFF Version: 8 [Excel 98/XP/2003/2007/2010]
BIFF Max record size : 8224

BIFF DateMode: 0 [day#l1 = 71900-01-01"]
BIFF Password/Crypted: NO, clear data

BIFF CodePage: UTF-16LE [Unicode]

BIFF Worksheets: 2

BIFF SST entries: 24

BIFF Formats: 2

BIFF eXtendedFormats : 24

Worksheets:

0] I'm a Worsheet
ok, Worksheet succesfully selected: currently active: 0
12 Rows X 7 Columns

1] Yet another
ok, Worksheet succesfully selected: currently active: 1
302 Rows X 4 Columns

Generated by Doxygen

38

Example Documentation

Here is another example. Note that this earlier version (Excel 3.0) format does not use the CFBF container, so no

information is provided for the first three entries.

./test_x1 v3sample.xls

Excel document: v3sample.xls

CFBF Version: UNKNOWN

CFBF Sector size: UNKNOWN

CFBF FAT entries: O

BIFF Version: 3 [Excel 3.0]

BIFF Max record size : UNKNOWN

BIFF DateMode: 0 [day#l1 = "1900-01-01"]
BIFF Password/Crypted: NO, clear data

BIFF CodePage: CP1252 [Windows Latin 1]
BIFF Worksheets: 1

BIFF Formats: 21

BIFF eXtendedFormats : 25

Worksheets:

0] Worksheet

ok, Worksheet succesfully selected:

17 Rows X 6 Columns

currently active:

For more information, or to aid with debugging, you can specify a -verbose flag, as shown in this example:

./test_x1 multi.xls —-verbose

Excel document: multi.xls

Worksheets:

SST [Shared String Table]:

0] uno

1] one

2] due

3] two

41 tre

5] three
18] dieci
19] ten
20] undici
21] eleven
22] dodici
23] twelve

FAT entries [File Allocation Table]:

0 -> Oxfffffffe FATSECT
1 -> Oxffffffff FREESECT
2 > 3

3 > 4
36 —> 37
37 —> 38

38 —> Oxfffffffe ENDOFCHAIN
39 -> Oxfffffffe ENDOFCHAIN

40 —> 41
41 -> Oxfffffffe ENDOFCHAIN
42 —> 43

43 -> Oxfffffffe ENDOFCHAIN
44 -> Oxffffffff FREESECT

127 —> Oxffffffff FREESECT

Generated by Doxygen

10.1 test_xl.c

*
test_xl.c

FreeXL Sample code

Author: Sandro Furieri a.furieri@lgt.it

N Y

~

Version: MPL 1.1/GPL 2.0/LGPL 2.1

The contents of this file are subject to the Mozilla Public License Version
1.1 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
for the specific language governing rights and limitations under the
License.

The Original Code is the FreeXL library
The Initial Developer of the Original Code is Alessandro Furieri

Portions created by the Initial Developer are Copyright 2011

the Initial Developer. All Rights Reserved.

(C)

Contributor (s
Brad Hards

) :

Alternatively, the contents of this file may be used under the terms of
either the GNU General Public License Version 2 or later (the "GPL"), or
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),

in which case the provisions of the GPL or the LGPL are applicable instead
of those above. If you wish to allow use of your version of this file only
under the terms of either the GPL or the LGPL, and not to allow others to
use your version of this file under the terms of the MPL, indicate your
decision by deleting the provisions above and replace them with the notice
and other provisions required by the GPL or the LGPL. If you do not delete
the provisions above, a recipient may use your version of this file under

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/ the terms of any one of the MPL, the GPL or the LGPL.

/

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "freexl.h"

int

main (int argc, char xargvl([])

{

const void xhandle;
int ret;
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned int idx;

unsigned int next_sector;
int biff_v8 = 0;

const char xutf8_string;
int verbose = 0;

int
int
int
int
int
int

info;

fat_count;
sst_count;
worksheet_count;
format_count;
xf_count;

if (argc == || argc == 3)
{
1f (argc == 3)
{
if (strcmp (argv([2], "-verbose") == 0)
verbose = 1;
}
}
else
{
fprintf (stderr, "usage: text_xl path.xls [—verbose]\n");
return -1;
}
/+ opening the .XLS file [Workbook] =/
ret = freexl_open (argv([l], &handle);
if (ret != FREEXL_OK)
{
fprintf (stderr, "OPEN ERROR: %d\n", ret);
return -1;
}
/*
* reporting .XLS information
*/

Generated by Doxygen

40 Example Documentation

printf ("\nExcel document: %s\n", argv[1l]);

printf (" \n");
/* CEFBF version */
ret = freexl get_info (handle, FREEXL_CFBF_VERSION, &info);
if (ret != FREEXL_OK)
{

fprintf (stderr, "GET-INFO [FREEXL_CFBF_VERSION] Error: %d\n", ret);
goto stop;

(info)

case FREEXL_CFBF_VER_3:
printf ("CFBF Version: 3\n");
break;

FREEXL_CFBF_VER_4:

printf ("CFBF Version: 4\n");
break;

> FREEXL_UNKNOWN :

printf ("CFBF Version: UNKNOWN\n");
break;

}i
/+ CFBF sector size x/
ret = freexl get_info (handle, FREEXL_CFBF_SECTOR_SIZE, &info);
if (ret != FREEXL_OK)
{
fprintf (stderr, "GET-INFO [FREEXL_CFBF_SECTOR_SIZE] Error: %d\n",

ret);
goto stop;
}
switch (info)
{
c > FREEXL_CFBF_SECTOR_512:
printf ("CFBF Sector size: 512\n");
break;
FREEXIL,_CFBF_SECTOR_4096:
printf ("CFBF Sector size: 4096\n");
break;
FREEXL_UNKNOWN :
printf ("CFBF Sector size: UNKNOWN\n");
break;

}i
/+* CFBF FAT entries =/
ret = freexl get_info (handle, FREEXL_CFBF_FAT_COUNT, &fat_count);
if (ret != FREEXL_OK)

{
fprintf (stderr, "GET-INFO [FREEXL_CFBF_FAT_COUNT] Error: %d\n", ret);
goto stop;
}
printf ("CFBF FAT entries: %u\n", fat_count) ;
/% BIFF version */
ret = freexl_get_info (handle, FREEXL_BIFF_VERSION, &info);
if (ret != FREEXL_OK)

{

fprintf (stderr, "GET-INFO [FREEXL_BIFF_VERSION] Error: %d\n", ret);
goto stop;

~h (info)

FREEXL_BIFF_VER_2:

printf ("BIFF Version: 2 [Excel 2.0]\n");
break;

FREEXL_BIFF_VER_3:
printf ("BIFF Version: 3 [Excel 3.0]\n");
break;

> FREEXL_BIFF_VER_4:
printf ("BIFF Version: 4 [Excel 4.0]\n");
break;

FREEXL_BIFF_VER_5:

printf ("BIFF Version: 5 [Excel 5.0 / Excel 95]\n");
break;

- FREEXL_BIFF_VER_S8:

printf ("BIFF Version: 8 [Excel 98/XP/2003/2007/2010]\n");
biff_v8 = 1;

br <;

> FREEXL_UNKNOWN :

printf ("BIFF Version : UNKNOWN\n");

break;

}i
/+ BIFF max record size x/
ret = freexl_get_info (handle, FREEXL_BIFF_MAX RECSIZE, &info);
1f (ret != FREEXL_OK)
{

fprintf (stderr, "GET-INFO [FREEXL_BIFF_MAX_ RECSIZE] Error: %d\n",
ret);
goto stop;

switch (info)

Generated by Doxygen

10.1 test_xl.c

41

e FREEXL_BIFF_MAX RECSZ_2080:

printf ("BIFF Max record size : 2080\n");

break;

> FREEXL_BIFF_MAX_RECSZ_8224:

printf ("BIFF Max record size : 8224\n");

break;
> FREEXL_UNKNOWN :

printf ("BIFF Max record size : UNKNOWN\n");

break;

}i
/* BIFF DateMode */
ret = freexl_get_info (handle, FREEXL_BIFF_DATEMODE, &info);
1f (ret != FREEXL_OK)
{

fprintf (stderr, "GET-INFO [FREEXL_BIFF_DATEMODE] Error: %d\n", ret);

goto stop;

~h (info)

FREEXL,_BIFF_DATEMODE_1900:

printf ("BIFF DateMode: 0 [day#l = 71900-01-01"]\n");
break;
> FREEXL_BIFF_DATEMODE_1904:
printf ("BIFF DateMode: 1 [day#l = 71904-01-02"]1\n");
break;
se FREEXL_UNKNOWN:
printf ("BIFF DateMode: UNKNOWN\n");
break;

}i
/* BIFF Obfuscated =/
ret = freexl_get_info (handle, FREEXL_BIFF_PASSWORD, &info);
1f (ret != FREEXL_OK)
{

fprintf (stderr, "GET-INFO [FREEXL_BIFF_PASSWORD] Error: %d\n", ret);

goto stop;

tch (info)

case FREEXL_BIFF_OBFUSCATED:

printf ("BIFF Password/Crypted: YES, obfuscated (not accessible)\n");

break;

FREEXL_BIFF_PLAIN:

printf ("BIFF Password/Crypted: NO, clear data\n");

break;
> FREEXL_UNKNOWN :

printf ("BIFF Password/Crypted: UNKNOWN\n");

break;

}i
/+ BIFF CodePage */
ret = freexl_get_info (handle, FREEXL_BIFF_CODEPAGE, &info);
if (ret != FREEXI_OK)
{

fprintf (stderr, "GET-INFO [FREEXL_BIFF_CODEPAGE] Error: %d\n", ret);

goto stop;

(info)

FREEXL_BIFF_ASCII:

printf ("BIFF CodePage: ASCII\n");
break;
FREEXL_BIFF_CP437:
printf ("BIFF CodePage: CP437 [OEM United States]\n");
break;
case FREEXL_BIFF_CP720:
printf ("BIFF CodePage: CP720 [Arabic (DOS)]\n");
break;
FREEXL_BIFF_CP737:
printf ("BIFF CodePage: CP737 [Greek (DOS)]\n");
break;
se FREEXL_BIFF_CP775:
printf ("BIFF CodePage: CP775 [Baltic (DOS)]\n");
break;
-~ FREEXL_BIFF_CP850:
printf ("BIFF CodePage: CP850 [Western European (DOS)]\n");
break;
-~ FREEXL_BIFF_CP852:
printf ("BIFF CodePage: CP852 [Central European (DOS)]\n");
break;
case FREEXL_BIFF_CP855:
printf ("BIFF CodePage: CP855 [OEM Cyrillic]\n");
break;
case FREEXL_BIFF_CP857:
printf ("BIFF CodePage: CP857 [Turkish (DOS)]\n");
break;

FREEXL_BIFF_CP858:
printf ("BIFF CodePage: CP858

[OEM Multilingual Latin I]\n");

Generated by Doxygen

42 Example Documentation

break;
e FREEXL_BIFF_CP860:
printf ("BIFF CodePage: CP860 [Portuguese (DOS)]\n");
break;
> FREEXL_BIFF_CP861:
printf ("BIFF CodePage: CP861 [Icelandic (DOS)]\n");
break;
> FREEXL_BIFF_CP862:
printf ("BIFF CodePage: CP862 [Hebrew (DOS)]\n");
break;
FREEXIL_BIFF_CP863:
printf ("BIFF CodePage: CP863 [French Canadian (DOS)]\n");
break;
FREEXL_BIFF_CP864:
printf ("BIFF CodePage: CP864 [Arabic (864)]\n");
break;
FREEXL_BIFF_CP865:
printf ("BIFF CodePage: CP865 [Nordic (DOS)]\n");
break;
FREEXL_BIFF_CP866:
printf ("BIFF CodePage: CP866 [Cyrillic (DOS)]\n");
break;
> FREEXL_BIFF_CP869:
printf ("BIFF CodePage: CP869 [Greek, Modern (DOS)]\n");
break;
- FREEXL_BIFF_CP874:
printf ("BIFF CodePage: CP874 [Thai (Windows)]\n");
break;
FREEXL_BIFF_CP932:
printf ("BIFF CodePage: CP932 [Japanese (ShifthIS)]\n");
break;
case FREEXL_BIFF_CP936:
printf
("BIFF CodePage: CP936 [Chinese Simplified (GBZ312)]\n");
break;
case FREEXL_BIFF_CP949:
printf ("BIFF CodePage: CP949 [Korean]\n");

break;

FREEXL_BIFF_CP950:

printf
("BIFF CodePage: CP950 [Chinese Traditional (Big5)]\n");

break;

FREEXL_BIFF_UTF16LE:
printf ("BIFF CodePage: UTF-16LE [Unicode]\n");
break;
. FREEXL_BIFF_CP1250:
printf ("BIFF CodePage: CP1250 [Windows Central Europel\n");
break;

FREEXL_BIFF_CP1251:
printf ("BIFF CodePage: CP1251 [Windows Cyrillic]\n");
break;

se FREEXL_BIFF_CP1252:
printf ("BIFF CodePage: CP1252 [Windows Latin 1]\n");
break;
se FREEXL_BIFF_CP1253:

printf ("BIFF CodePage: CP1253 [Windows Greek]\n");
break;

FREEXL_BIFF_CP1254:
printf ("BIFF CodePage: CP1254 [Windows Turkish]\n");
break;
. FREEXL_BIFF_CP1255:

printf ("BIFF CodePage: CP1255 [Windows Hebrew]\n");
break;
e FREEXL_BIFF_CP1256:

printf ("BIFF CodePage: CP1256 [Windows Arabic]\n");
break;

FREEXL_BIFF_CP1257:

printf ("BIFF CodePage: CP1257 [Windows Baltic]\n");
break;
- FREEXL_BIFF_CP1258:

printf ("BIFF CodePage: CP1258 [Windows Vietnamese]\n");
break;

FREEXL_BIFF_CP1361:

printf ("BIFF CodePage: CP1361 [Korean (Johab)]\n");
break;
> FREEXL_BIFF_MACROMAN:

printf ("BIFF CodePage: MacRoman\n");

break;

case FREEXL_UNKNOWN:
printf ("BIFF CodePage: UNKNOWN\n");
break;

Vi
/+ BIFF Worksheet entries x/
ret = freexl_get_info (handle, FREEXL_BIFF_SHEET_COUNT, &worksheet_count);
if (ret != FREEXL_OK)
{
fprintf (stderr, "GET-INFO [FREEXL_BIFF_SHEET_COUNT] Error: %d\n",

Generated by Doxygen

10.1 test_xl.c 43

ret);
goto stop;
}
printf ("BIFF Worksheets: %u\n", worksheet_count) ;
1f (biff_v8)
{
/* BIFF SST entries x/
ret = freexl_get_info (handle, FREEXL_BIFF_STRING_COUNT, &sst_count);
i1f (ret != FREEXL_OK)
{
fprintf (stderr,
"GET-INFO [FREEXL_BIFF_STRING_COUNT] Error: %d\n",

ret);
stop;
}
printf ("BIFF SST entries: %u\n", sst_count) ;

}
/+ BIFF Format entries =/
ret = freexl get_info (handle, FREEXL_BIFF_FORMAT_COUNT, &format_count);
if (ret != FREEXL_OK)
{
fprintf (stderr, "GET-INFO [FREEXL_BIFF_FORMAT_COUNT] Error: %d\n",
ret);
goto stop;
}
printf ("BIFF Formats: %u\n", format_count);
/+ BIFF XF entries =/
ret = freexl get_info (handle, FREEXL_BIFF_XF_COUNT, &xf_count);
if (ret != FREEXL_OK)
{
fprintf (stderr, "GET-INFO [FREEXL_BIFF_XF_COUNT] Error: %d\n", ret);
goto stop;
}
printf ("BIFF eXtendedFormats : %u\n", xf_count);
printf
("\nWorksheets:\n \n");
for (idx = 0; idx < worksheet_count; idx++)
{

/* printing BIFF Worksheets entries x/
unsigned short active;
unsigned int rows;
unsigned short columns;
ret = freexl_get_worksheet_name (handle, idx, &utf8_string);
if (ret != FREEXL_OK)

{

fprintf (stderr, "GET-WORKSHEET-NAME Error: %d\n", ret);

goto stop;
}
if (utf8_string == NULL)
printf ("%$3u] NULL (unnamed)\n", idx);
else
printf ("%$3u] %s\n", idx, utf8_string);
ret = freexl_select_active_worksheet (handle, idx);
if (ret != FREEXL_OK)
{
fprintf (stderr, "SELECT-ACTIVE_WORKSHEET Error: %d\n", ret);
goto stop;
}
ret = freexl get_active_worksheet (handle, &active);
if (ret != FREEXL_OK)
{
fprintf (stderr, "GET-ACTIVE_WORKSHEET Error: %d\n", ret);
goto stop;
}
printf
("\tok, Worksheet successfully selected: currently active: %u\n",
active);
ret = freexl_worksheet_dimensions (handle, &rows, &columns);
if (ret != FREEXL_OK)

{
fprintf (stderr, "WORKSHEET-DIMENSIONS Error: %d\n", ret);
goto stop;
}
printf ("\t%u Rows X %u Columns\n\n", rows, columns);
}
if (!verbose)
goto stop;
if (biff_v8)
{
/% printing BIFF SST entries */
printf
("\nSST [Shared String Table]:\n \n");
for (idx = 0; idx < sst_count; idx++)

{

ret = freexl_get_SST_string (handle, idx, &utf8_string);
f (ret != FREEXL_OK)
{

Generated by Doxygen

44 Example Documentation

fprintf (stderr, "GET-SST-STRING Error: %d\n", ret);
joto stop;
}
(utf8_string == NULL)
printf ("%$8u] NULL (empty string)\n", idx);

printf ("%$8u] %s\n“, idx, utf8_string);

}

printf
("\nFAT entries [File Allocation
Table]:\n \n");
“or (idx = 0; idx < fat_count; idx++)

{
/% printing each FAT entry =/
ret = freexl get_FAT_entry (handle, idx, &next_sector);
if (ret != FREEXL_OK)
{
fprintf (stderr, "GET-FAT-ENTRY Error: %d\n", ret);

goto stop;
}
if (next_sector == Oxffffffff)
printf ("%$8u -> Oxffffffff FREESECT\N", idx);
if (next_sector == 0Oxfffffffe)
printf ("%8u -> Oxfffffffe ENDOFCHAIN\n", idx);
else 1if (next_sector == O0xfffffffd)
printf ("%$8u -> Oxfffffffe FATSECT\n", idx) ;
1 (next_sector == Oxfffffffc)

printf ("%$8u -> Oxfffffffe DIFSECT\n", idx) ;

printf ("%8u -> %8u\n", idx, next_sector);

}

stop:
/* closing the .XLS file [Workbook] =/
ret = freexl_close (handle);
if (ret != FREEXL_OK)
{
fprintf (stderr, "CLOSE ERROR: %d\n", ret);
L -1
}
return 0;

10.2 xi2sql.c

xI2sqgl a simple tool that takes an .xIs file as input, and generates a SQL script as output. You can then use the SQL
script to load the extracted data info a SQLite / SpatiaLite database.

Here is a typical usage example:

./x12sgl comuni_italiani.xls >comuni.sqgl
spatialite italy.sglite <comuni.sqgl

The first command will parse the .xls document, extracting any data and generating the corresponding SQL script.
The second command will create and populate a database from the SQL script. When using xI2sqgl this way, the first
worksheet will become database table xlI_table 00, the second worksheet will become database table xI_table 01
and so on.

As an alternative, if you pass a second argument to xI2sql, this argument will be used as the table prefix. For
example:

./x12sgl comuni_italiani.xls italia >comuni.sqgl
spatialite italy2.sglite <comuni.sqgl

This will result in the tables being named italia_00, italia_01 and so on.

This sample code provides an example of:

Generated by Doxygen

10.2 xl2sql.c

45

« selecting a worksheet to be active

* retrieving cell values

*

x12sqgl.c
FreeXL Sample code

Author: Sandro Furieri a.furieri@lqgt.it

Version: MPL 1.1/GPL 2.0/LGPL 2.1

The contents of this file are subject to the Mozilla Public License Version
1.1 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
for the specific language governing rights and limitations under the
License.

The Original Code is the FreeXL library
The Initial Developer of the Original Code is Alessandro Furieri

Portions created by the Initial Developer are Copyright (C) 2011
the Initial Developer. All Rights Reserved.

Contributor(s) :
Brad Hards

Alternatively, the contents of this file may be used under the terms of
either the GNU General Public License Version 2 or later (the "GPL"), or
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
in which case the provisions of the GPL or the LGPL are applicable instead
of those above. If you wish to allow use of your version of this file only
under the terms of either the GPL or the LGPL, and not to allow others to
use your version of this file under the terms of the MPL, indicate your
decision by deleting the provisions above and replace them with the notice
and other provisions required by the GPL or the LGPL. If you do not delete
the provisions above, a recipient may use your version of this file under
the terms of any one of the MPL, the GPL or the LGPL.

N N N N N N N N T

/
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "freexl.h"
static void
make_table_name (const char xprefix, unsigned short index, char xtable_name)
{
/+ generating an SQL clean table name */
char buf[2048];
char xin = buf;
char xout = table_name;
sprintf (buf, "%s_%02u", prefix, index);
/* masking for SQL =*/

xout++ = 7"’ ;
while (xin != 7\0")
{
if (xin == ""7")
xout++ = "’ ;
*out++ = xin++;

}

*out++ = "’ ;

xout = "\0’;
}
static void
print_sqgl_string (const char xstring)
{
/* printing a well formatted SQL string =/

const char *p = string;
putchar (',");
putchar (7 7);
putchar ("\”);
while (xp != ’\0’)
{
if (»p == ’\")

{
/+ masking any ' as ” */
putchar ("\"”);
}
putchar (*p);

Generated by Doxygen

46 Example Documentation

pt+;
}
putchar ("\"”);
}
int
main (int argc, char xargv[])
{
unsigned int worksheet_index;
const char xtable_prefix = "x1_table";
char table_name[2048];
const void xhandle;
int ret;
unsigned int info;
unsigned int max_worksheet;
unsigned int rows;
unsigned short columns;
unsigned int row;
unsigned short col;
1t (argc == 2 || argc == 3)
{
if (argc == 3)
table_prefix = argv([2];

fprintf (stderr, "usage: x12sgl path.xls [table_prefix]\n");
return -1;
}
/+ opening the .XLS file [Workbook] =*/
ret = freexl_open (argv[l], &handle);
if (ret != FREEXL_OK)
{
fprintf (stderr, "OPEN ERROR: %d\n", ret);
return -1;

}
/+ checking for Password (obfuscated/encrypted) =/
ret = freexl get_info (handle, FREEXL_BIFF_PASSWORD, &info);
if (ret != FREEXL_OK)
{

fprintf (stderr, "GET-INFO [FREEXL_BIFF_PASSWORD] Error: %d\n", ret);
goto stop;

(info)

> FREEXL_BIFF_PLAIN:

break;

> FREEXL_BIFF_OBFUSCATED:

1t:

fprintf (stderr, "Password protected: (not accessible)\n");
goto stop;

bi
/% querying BIFF Worksheet entries =/
ret = freexl get_info (handle, FREEXL_BIFF_SHEET_COUNT, &max_worksheet);
if (ret != FREEXL_OK)
{

fprintf (stderr, "GET-INFO [FREEXL_BIFF_SHEET_COUNT] Error: %d\n",

ret);
goto stop;
}
/* SQL output =/
printf ("--\n-- this SQL script was automatically created by x12sql\n");
printf ("--\n-- input .xls document was: %s\n--\n", argv[1]);

printf ("\nBEGIN;\n\n");
for (worksheet_index = 0; worksheet_index < max_worksheet;
worksheet_index++)

const char »utf8_worsheet_name;
make_table_name (table_prefix, worksheet_index, table_name);
ret =
freexl get_worksheet_name (handle, worksheet_index,
&utf8_worsheet_name) ;
1f (ret != FREEXL_OK)
{
fprintf (stderr, "GET-WORKSHEET-NAME Error: %d\n", ret);
goto stop;
}
/* selecting the active Worksheet =/
ret = freexl_select_active_worksheet (handle, worksheet_index);
if (ret != FREEXL_OK)
{
fprintf (stderr, "SELECT-ACTIVE_WORKSHEET Error: %d\n", ret);
goto stop;
}
/* dimensions =/
ret = freexl_worksheet_dimensions (handle, &rows, &columns);
i1f (ret != FREEXL_OK)
{

Generated by Doxygen

10.2 xl2sql.c

47

fprintf (stderr, "WORKSHEET-DIMENSIONS Error: %d\n",
goto stop;
}
printf ("--\n-- creating a DB table\n");
printf ("-- extracting data from Worksheet #%u: %s\n-—-\n",
worksheet_index, utf8_worsheet_name);
printf ("CREATE TABLE %s (\n", table_name);
printf ("\trow_no INTEGER NOT NULL PRIMARY KEY");
for (col = 0; col < columns; col++)
printf (",\n\tcol_%03u MULTITYPE", col);
printf (");\n");
printf ("--\n-- populating the same table\n--\n");
for (row = 0; row < rows; row++)

{
/+ INSERT INTO statements =/
FreeXL_CellValue cell;

printf ("INSERT INTO %s (row_no", table_name);
for (col = 0; col < columns; col++)
printf (", col_%03u", col);
printf (") VALUES (%u", row);
for (col = 0; col < columns; col++)
{
ret = freexl get_cell_value (handle, row, col,
if (ret != FREEXL_OK)
{
fprintf (stderr,
"CELL-VALUE-ERROR (r=%u c=%u) :
col, ret);
goto stop;
}
tch (cell.type)

e FREEXL_CELL_INT:
printf

ret);

&cell);

(", %d", cell.value.int_value);
break;
FREEXL_CELL_DOUBLE:
printf (", $1.12f", cell.value.double_value);

break;
e FREEXL_CELL_TEXT:
e FREEXL_CELL_SST_TEXT:
print_sqgl_string
break;
FREEXL_CELL_DATE:
FREEXL_CELL_DATETIME:
e FREEXL_CELL_TIME:
printf (",

rogrm
%s’'",
break;

e FREEXL_CELL_NULL:

(", NULL");

printf (");\n");
}
printf ("\n-- done: table end\n\n\n\n");
}
printf ("COMMIT;\n");
stop:

/+ closing the .XLS file [Workbook] =/
ret = freexl_close (handle);
if (ret != FREEXL_OK)
{
fprintf (stderr, "CLOSE ERROR: %d\n", ret);
return -1;
}
return 0;

(cell.value.text_value);

cell.value.text_value);

Generated by Doxygen

48

Example Documentation

Generated by Doxygen

Index

freexl.h
FREEXL BIFF_UNSELECTED_SHEET, 26
FreeXL CellValue, 27
FREEXL_CFBF_ILLEGAL_MINI_FAT_ENTRY, 26
FREEXL_CFBF_READ_ERROR, 26
FREEXL _CFBF_SEEK_ERROR, 26
freex|_close, 27
freexl_get_active_worksheet, 28
freexl_get_cell_value, 28
freexl_get_FAT_entry, 30
freexl_get_info, 30
freexl_get_SST_string, 31
freexl_get_worksheet_name, 32
FREEXL ILLEGAL MULRK_VALUE, 27
FREEXL_ILLEGAL RK_VALUE, 27
FREEXL_INVALID_MINI_STREAM, 27
freex|_open, 33
freex|_open_info, 33
freexl_select_active_worksheet, 34
freex|_version, 34
freex|_worksheet_dimensions, 34

FREEXL BIFF_UNSELECTED_SHEET
freexl.h, 26

FreeXL_CellValue
freexl.h, 27

FreeXL_CellValue_str, 19
type, 20
value, 20

FREEXL CFBF _ILLEGAL MINI_FAT ENTRY
freexl.h, 26

FREEXL_CFBF_READ_ERROR
freexl.h, 26

FREEXL _CFBF_SEEK_ERROR
freexl.h, 26

freex|_close
freexl.h, 27

freex|_get_active_worksheet
freexl.h, 28

freexl_get_cell_value
freexl.h, 28

freexl_get_FAT_entry
freexl.h, 30

freexl_get_info
freexl.h, 30

freexl_get_SST_string
freexl.h, 31

freexl_get_worksheet_name
freexl.h, 32

FREEXL ILLEGAL MULRK_VALUE

freexl.h, 27
FREEXL ILLEGAL RK_VALUE
freexl.h, 27
FREEXL_INVALID_MINI_STREAM
freexl.h, 27
freex|_open
freexl.h, 33
freex|_open_info
freexl.h, 33
freex|_select_active_worksheet
freexl.h, 34
freex|_version
freexl.h, 34
freex|_worksheet_dimensions
freexl.h, 34

headers/freexl.h, 21

type
FreeXL_CellValue_str, 20

value
FreeXL_ CellValue_str, 20

Generated by Doxygen

	1 Main Page
	1.1 Introduction

	2 The background story for FreeXL
	3 File format specifications and source information
	4 About the .xls binary format
	4.1 CFBF
	4.2 BIFF
	4.3 BIFF
	4.3.1 RK values
	4.3.2 Text values
	4.3.3 Retrieving Date, DateTime and Time values.

	5 Other tools and libraries
	6 Data Structure Index
	6.1 Data Structures

	7 File Index
	7.1 File List

	8 Data Structure Documentation
	8.1 FreeXL_CellValue_str Struct Reference
	8.1.1 Detailed Description
	8.1.2 Field Documentation
	8.1.2.1 type
	8.1.2.2

	9 File Documentation
	9.1 headers/freexl.h File Reference
	9.1.1 Detailed Description
	9.1.2 Macro Definition Documentation
	9.1.2.1 FREEXL_BIFF_UNSELECTED_SHEET
	9.1.2.2 FREEXL_CFBF_ILLEGAL_MINI_FAT_ENTRY
	9.1.2.3 FREEXL_CFBF_READ_ERROR
	9.1.2.4 FREEXL_CFBF_SEEK_ERROR
	9.1.2.5 FREEXL_ILLEGAL_MULRK_VALUE
	9.1.2.6 FREEXL_ILLEGAL_RK_VALUE
	9.1.2.7 FREEXL_INVALID_MINI_STREAM

	9.1.3 Typedef Documentation
	9.1.3.1 FreeXL_CellValue

	9.1.4 Function Documentation
	9.1.4.1 freexl_close()
	9.1.4.2 freexl_get_active_worksheet()
	9.1.4.3 freexl_get_cell_value()
	9.1.4.4 freexl_get_FAT_entry()
	9.1.4.5 freexl_get_info()
	9.1.4.6 freexl_get_SST_string()
	9.1.4.7 freexl_get_worksheet_name()
	9.1.4.8 freexl_open()
	9.1.4.9 freexl_open_info()
	9.1.4.10 freexl_select_active_worksheet()
	9.1.4.11 freexl_version()
	9.1.4.12 freexl_worksheet_dimensions()

	10 Example Documentation
	10.1 test_xl.c
	10.2 xl2sql.c

	Index

